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Abstract

This book deals with the inverse problem of identification of dynamic loads
and its applications for low frequency structural health monitoring (SHM). It
collects and unifies the work performed by the author within the framework of
three research projects either alone or together with the three Ph.D. students
under his supervision or co-supervision1. In particular:
• The inverse linear problem of load identification is discussed in the prac-

tically important case of limited instrumentation. Various techniques for
augmenting the missing information are described together with three
complementary quantitative measures of optimum sensor placement.

• A method for identification of dynamic loads in elastoplastic structures
is developed, including sensitivity analysis of the response and gradient-
based optimization.

• The general methodology of the virtual distortion method (VDM) is used
to represent various SHM problems in terms of a load identification prob-
lem. This includes
– A methodology for virtual isolation of substructures for the purpose of

local SHM.
– A model-free (nonparametric and based on purely experimental data)

methodology for identification of structural damages, modifications and
inelastic impacts.

– A unified approach to the problem of simultaneous identification of
unknown excitations and structural damages.

All presented approaches are tested and illustrated in numerical examples that
use a realistic numerical noise level of at least 5% rms. Depending on laboratory
constraints, experimental verification is performed in selected cases.

1Two Ph.D. theses are defended in 2010 (Harbin Institute of Technology, Harbin, China),
and one thesis is in progress (IPPT PAN, Warsaw, Poland).
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Streszczenie

Książka poświęcona jest problemowi odwrotnemu identyfikacji obciążeń dy-
namicznych i jego zastosowaniom w dziedzinie niskoczęstotliwościowego moni-
torowania stanu technicznego konstrukcji. W spójnej formie prezentuje ona wy-
niki badań przeprowadzonych przez autora samodzielnie lub wspólnie z trojgiem
doktorantów pod jego kierownictwem2.
• W pracy jest rozważany problem identyfikacji wymuszeń dynamicznych

w ważnym wypadku niekompletnej informacji, tzn. ograniczonej liczby
czujników. Zaproponowano techniki heurystycznego uzupełniania braku-
jącej informacji oraz trzy miary optymalności rozmieszczenia czujników.

• Zaproponowana metoda identyfikacji jest rozszerzona na wypadek kon-
strukcji o sprężystoplastycznej charakterystyce materiałowej; opracowana
jest metoda analizy wrażliwości umożliwiająca zastosowanie klasycznych,
gradientowych metod optymalizacji.

• Autor wykazuje, że wykorzystując metodę dystorsji wirtualnych, szereg is-
totnych problemów monitorowania stanu technicznego konstrukcji można
rozwiązać poprzez sprowadzenie ich do problemu identyfikacji równoważ-
nego obciążenia dynamicznego. Dotyczy to problemów takich jak:
– wirtualna izolacja istotnych podstruktur pozwalająca na ich lokalne

monitorowanie z pominięciem wpływów pozostałej części kontrukcji;
– bezmodelowa (nieparametryczna i czysto eksperymentalna) identyfi-

kacja uszkodzeń i modyfikacji konstrukcji oraz uderzeń niesprężystych;
– jednoczesna identyfikacja wymuszeń dynamicznych i uszkodzeń.

Opracowane metody przetestowano numerycznie z błędem pomiarowym symulo-
wanym na realistycznym poziomie 5% rms. W ramach możliwości praktycznych,
część metod zweryfikowano eksperymentalnie w warunkach laboratoryjnych.

2Dwie dysertacje zostały obronione w 2010 roku na Politechnice w Harbinie, Chiny
(współpromotorstwo); przewód doktorski trzeciego doktoranta został otwarty w styczniu 2013
roku w Instytucie Podstawowych Problemów Techniki PAN (promotorstwo pomocnicze).



Symbols and abbreviations

The following list provides the most frequently used symbols and abbreviations:

ω – angular frequency
t, τ – time variables
T – time interval length
aL – vector of sensor responses in undamaged structure
aM – vector of measured sensor responses in damaged structure
a – vector of modeled sensor responses in damaged structure
f0 – external excitation vector
ftest – testing excitation vector
φij – jth basis distortion vector of ith element
κij – jth distortion of ith element
κ0ij – jth virtual distortion of ith element
p0 – pseudo load vector
ν0 – vector of virtual distortions and pseudo loads
ε0i – axial virtual distortion of ith truss element
β0i – plastic strain of ith truss element
Ψi – total plastic strain of ith truss element
Φi – yield function of ith truss element
σ⋆i – initial plastic yield stress of ith truss element
γi – hardening coefficient of ith truss element
εi – axial strain of ith truss element
Ei – Young’s modulus of ith element
M – mass matrix
K – stiffness matrix
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K̃ – modified stiffness matrix
∆M – modification of mass matrix
∆K – modification of stiffness matrix
µ – vector of damage (or modification) coefficients
F – objective function
H – displacement impulse response matrix
H – operator of convolution with H
B – reduced impulse response matrix
B – operator that transforms excitations or virtual distortions

into sensor responses
D – time-discretized reduced impulse response matrix
I – identity operator
Lf – load allocation matrix
La
0,L

a
1,L

a
2 – sensor placement matrices

qi – experimentally applied quasi impulse excitation
Ip – indicator function
Nt – number of time steps
Ndof – number of degrees of freedom
Ne – number of externally excited DOFs
Nr – number of sensors
δij – Kronecker’s delta
δ(t) – Dirac’s delta

APA – amplified piezo actuator
AVM – adjoint variable method
CA – combined approximations
CGLS – conjugate gradient least squares
DDM – direct differentiation method
DOF – degree of freedom
ERA – eigensystem realization algorithm
FE – finite element
FFT – fast Fourier transform
MAC – modal assurance criterion
SVD – singular value decomposition
SVE – singular value expansion
TSVD – truncated singular value decomposition
VDM – virtual distortion method
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1

Introduction

The book is devoted to the inverse problem of identification of dynamic loads
and its applications in low frequency structural health monitoring (SHM). This
chapter approaches the problem of load identification from the perspective of
a general classification of inverse problems, considers its relation to the field of
SHM and provides an overview of the scope of the book.

1.1 The inverse problem of load identification

Figure 1.1 depicts a general scheme of a system together with its input and
output. Schematically, the relation between the input and the output can be
stated as

aL = B0f0, (1.1)

where B0 is a certain operator that acts on the input f0 (excitation) to produce
the output aL (response). The scheme can be used to introduce and differentiate
between the three following general types of problems:

1. Direct problem. Known the system B0 and the input f0, find the output
aL of the system.

2. Inverse problem I. (system identification) Known the input f0 and the
output aL, find the system B0.

3. Inverse problem II. (input identification) Known the system B0 and the
output aL, find the input f0.

The superscripts “L” and “0” are used in (1.1) to maintain notational consistency
with the rest of the book. Their purpose and the precise meaning of the symbols
will become clear in Chapters 2 and 3.

The problem of identification of dynamic loads is an inverse problem of
type II (input identification). Such a problem occurs in many applications, where
excitation by unknown loads can result in significant structural response, but it
is impossible or hardly possible to measure these loads directly. This includes
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f 0 aL

Figure 1.1. A general scheme of a system, its input and output.

excitations by moving crowd during sport events, in-flight collisions with birds,
ambient environmental excitations such as due to wind or traffic, vehicular loads
of a bridge, etc. In all such cases, only indirect load monitoring is possible:
the excitation can be only deduced based on measured structural response and
knowledge of certain characteristics of the underlying structure. At the same
time, accurate knowledge of the actual dynamic loads can be important in off-
line applications (black-box monitoring systems for forensic engineering, fatigue
assessment or design code calibration, etc.) or even crucial in online applications
(such as decision support systems or traffic control), which stimulates progress in
the field. A brief review of the current research can be found in Subsection 2.1.2.

Within the context of identification of excitation loads, this book is focused
on problems related to:

limited instrumentation In many practical cases, the instrumentation is in-
sufficient to attain a unique solution, since little is known about the ex-
citation and a general form has to be assumed. Means of augmenting the
missing information are considered.

ill-conditioning Load identification is an inverse problem. In linear case, it
can be formulated in the form of a Volterra integral equation with a
weakly singular kernel. Therefore, it is ill-conditioned, or even ill-posed
in the sense of Hadamard, which has to be taken into account in all
identification procedures.

optimum sensor placement Limited instrumentation and ill-conditioning of
the problem significantly decrease the amount of useful information that is
contained in the measured response. In practice, the identification is thus
based on incomplete information, and it becomes especially important to
consider optimum placement of the available sensors.

elastoplastic structures As a rule, literature on force identification takes into
account only linear structures. And when nonlinear structures are con-
sidered, they are elastic. Identification techniques need to be developed
for the case of nonelastic structures.
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1.2 Structural health monitoring and load identification

The primary task of SHM systems is damage detection, which is the first
level of the three-level process known as damage identification:
• Level 1. Damage detection.

• Level 2. Localization of the detected damage.

• Level 3. Quantification of the damage.
In general, all existing methods can be divided into two groups: local and global
approaches, which are respectively based on high and low frequency testing.
Local monitoring methods are used for precise identification of small defects
in narrow inspection zones via ultrasonic testing (for reviews and examples see
[1–6]) or statistical classification techniques [7, 8]. These methods do not require
global structural modeling and are outside the scope of this book. Global SHM
methods are aimed at detection or identification of significant defects in a nonlo-
cal inspection zone, which is often the whole structure. A vast number of existing
approaches can be categorized with respect to various criteria. In an excellent
overview [9], Friswell differentiates between model updating, modal and pattern
recognition methods; others like Yan [10] single out modal, time domain and
wavelet approaches. For other classifications and reviews, see, e.g., Carden and
Fanning [11], Chang et al. [12], Worden and Dulieu-Barton [13], Kołakowski [14]
or the short Section 4.1 in this book. Modal methods detect, locate and quan-
tify damages by the changes of the related modal parameters; reviews can be
found in Doebling et al. [15, 16] or in Uhl and Mendrok [17]. Time domain meth-
ods utilize either statistical concepts and time series models [18] or deterministic
model-updating approaches [19, 20], which can be further categorized into direct
and sensitivity-based methods. In the last decade, wavelet analysis has become
a popular tool [21–25], and it is often used together with pattern recognition
methods [26]. A part of these methods rely on the assumption that external
excitations are known. Others, like some modal and time series methods, can
be used without exact information about the excitation, but they are confined
to special conditions like ambient excitation or free response of the monitored
structure.

According to the classification introduced in Section 1.1, damage identifi-
cation is the inverse problem of type I: the excitation is known or at least
well characterized, the response is measured, and it is the system that is (par-
tially) unknown and needs to be identified. Model-based approaches represent
the damage in terms of a vector µ of damage parameters, which fully defines the
system B0(µ). Damage identification is then equivalent to the task of finding the
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unknown vector µ, that is to the problem of solving the following counterpart
to (1.1) with respect to µ:

a = B0(µ)f0, (1.2)

where f0 is the known excitation and a is the known response of the damaged
system that is different from the response aL of the original system. Such a for-
mulation suggests that there is a fundamental difference between the problems of
damage identification (type I) and load identification (type II), and it explains
why they are typically solved using approaches that are essentially different.
This book is aimed at bridging this gap. In particular, this book demonstrates
that effective load identification techniques are crucial for SHM, since many
typical SHM problems can be formulated and solved in terms of load identifica-
tion problems. This is possible thanks to the virtual distortion method [27, 28],
which allows structural damages and material nonlinearities to be conveniently
modeled using the equivalent pseudo loads (or virtual distortions, which are cer-
tain combinations of the pseudo loads). These pseudo loads are additional loads
that excite the original unmodified structure at the locations of the modeled
modifications [29, 30]. This is discussed in detail in Chapter 3 and illustrated in
subsequent chapters. In short, the VDM expresses (1.2) in the equivalent form of

a = B0f0 +Baνν0

= aL +Baνν0,
(1.3a)

where B0 is the original undamaged system, the vector ν0 collects the pseudo
loads and virtual distortions, and it is related to the damage parameters µ and
the response a by the following implicit equation

0 = R
(
ν0,µ,a

)
. (1.3b)

Equation (1.3b) is stated here in a general form, as its specific form depends on
the particular system and the type of the considered damages, modifications or
nonlinearities. All potential nonlinearities (material or related to damages) are
modeled by (1.3a), so that B0 and Baν in (1.3a) are linear, which is an important
feature of the method. The VDM provides thus a framework, in which the un-
knowns in type I and type II inverse problems can be treated in a unified manner,
and allows the same methodology of load identification to be uniformly applied
across a range of seemingly loosely related SHM problems, such as identification
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of structural damages and inelastic impacts, virtual isolation of substructures
for the purpose of local SHM, simultaneous identification of coexistent loads
and damages, etc.

Throughout this book, load identification is thus understood in a broader
sense than just force identification: besides identification of the actual external
excitation forces, it includes also identification of the pseudo loads that are used
to model structural damages and modifications such as virtual supports, as well
as identification of parametrized excitations such as inelastic impacts or moving
masses.

1.3 Numerical models and experimental setups

This book is focused on identification of dynamic loads, and hence the ex-
citation f0 in (1.1) and (1.3a), as well as the response a and the pseudo load
p0, are initially assumed to be functions of a continuous time variable t (or
sometimes the frequency ω). Such a formulation allows the load identification
problem to be represented in the form of an integral equation and gives more
insight into its properties. Then, for the purpose of numerical solution, the time
variable is discretized, which transforms the identification problem into a large
discrete linear system with a dense structured matrix.

The response and the loads are also assumed to be spatially discretized,
that is a, f0 and ν0 are originally vector functions of time t or frequency ω.
Spatial discretization corresponds well to the framework of the finite element
(FE) method, which is ubiquitously used for modeling of real-world structures,
since in FE models any excitation has to be distributed onto a discrete set of the
degrees of freedom (DOFs). The FE modeling approach is also used throughout
this book in all the numerical examples, which are all either 3D trusses or 2D
frames composed of Euler–Bernoulli beams with consistent mass matrices, with
the sole exception of two simple mass–spring systems in Section 5.6. Since the
VDM assumes that the original undamaged structure is linear, no geometric
nonlinearity is considered and the formulation is limited to the case of small
displacements and rotations.

Many of the techniques proposed and discussed in this book are verified
experimentally. Two stands are used for this purpose: either a 3D steel truss
structure (26 nodes, 70 elements, 4 m length, mass 32 kg) constructed using a
commercially available system of nodes and connecting tubes [31], see Fig. 4.1,
or a vertically suspended slender aluminum cantilever beam (1.36 m length,
mass 0.307 kg), see Fig. 5.13.
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1.4 Scope of the work

The book is organized in eight chapters and one appendix. The current
chapter is the first chapter.

Chapter 2 discusses the inverse problem of indirect identification of dynamic
excitation loads in linear structures based on their measured response. This is
the problem of solving (1.1) with respect to f0, where B0 is assumed to be a lin-
ear transformation. The chapter presents a methodology focused on the case of
a limited instrumentation and takes into account the inherent ill-conditioning of
the problem. The subspaces of reconstructible and unreconstructible excitation
components are introduced; the identification problem is unique within the for-
mer subspace, while the latter is used to construct an observationally equivalent
excitation that, in a given sense, optimally approximates the actual excitation.
Three complementary criteria of sensor placement optimality are discussed; they
are based on either conditioning or informative content of the reconstructible
subspace. The proposed techniques are verified in a numerical example of a 3D
truss structure. In its earlier form, the approach has been proposed by the author
in [32], see also [33–37].

Chapter 3 is devoted to the virtual distortion method, which is a method
for quick structural reanalysis being developed in the Institute of Fundamental
Technological Research (IPPT PAN) [27, 28]. The VDM yields the response of a
modified structure by computing the effect of the modifications on its original re-
sponse, without solving structural equations from scratch. In case of a localized
modification, it results in a significantly shorter time of computation. Various
types of modifications are treatable in a unified manner, including modifications
of structural stiffness and mass, which within the context of the SHM are often
used to represent the damage. The inverse problem of load identification is at
the core of the VDM, since the modifications are modeled using the equiva-
lent pseudo loads or virtual distortions, which are such combinations of pseudo
loads that result in distortions of the affected structural elements, see (1.3a).
Throughout the rest of the book, the method is extensively used as a conve-
nient vehicle for formalization of various SHM-related identification problems
in terms of the load identification problem. The chapter is focused on the deter-
ministic time-domain formulation of the VDM in direct and inverse problems of
dynamics. A new continuous-time notation is introduced, partly based on the
work earlier presented by the author in [29, 38–40]. Compared to the original
discrete-time notation, this formulation is more concise and clearly emphasizes
the mathematical structure and properties of the reanalysis problem together
with its relation to the inverse problem of load identification. The derivation
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sets out from the equation of motion, which seems to be more straightforward
than the postulate of equality of local strains and element forces. Moreover, in
the inverse problem, a distinction is introduced between the cases of known and
unknown types of local damages (e.g., “a breathing crack with an unknown con-
stant reduction of stiffness in tension” vs. just “an unknown damage that affects
stiffness of the element”); the latter is discussed in detail and further developed
in Chapter 6.

Chapter 4 presents a part of the research on model-free SHM conducted by
the author together with Grzegorz Suwała, a Ph.D. student under his supervi-
sion1 within the framework of project TEAM. The approach aims to address
the common practical problems that occur in monitoring of complex structures:
model-based methods tend to provide accurate identification results, but it is
difficult to update a reliable parametric model of such a structure, while pattern
recognition methods are typically unable of parametric quantification of dam-
ages. The essentially nonparametric approach of the VDM to structural mod-
eling is used here to develop a purely experimental monitoring methodology
that is directly based on experimentally measured impulse response functions,
see [29] and [30, 38, 41–45]. Such an approach can be advantageous in case
of real-world structures, where it is often much easier to perform a number of
localized measurements of impulse response functions than to update a para-
metric model of the global structure. Even if the developed method requires no
parametric numerical model of the monitored structure, it still can be used for
identification of parametrized modifications, damages or inelastic impacts; in
the field of SHM, this is atypical and characteristic enough to warrant the name
of a model-free approach. In line with the general methodology of the VDM,
all structural modifications are modeled with the equivalent pseudo loads that
need to be computed using load identification procedures. The approach is ver-
ified experimentally in identification of nodal mass modifications of a 3D truss
structure.

Chapter 5 reports on a part of the research on local SHM performed together
with Jilin Hou, a Ph.D. student2 co-supervised by the author together with
Prof. Jinping Ou. The presented research has been performed during a one-
year stay of Mr. Hou in IPPT PAN within the framework of project MONIT
and concerns the substructure isolation method, see [46–53]. The motivation
behind it are the facts that global SHM of large and complex structures is

1The doctoral proceedings of Mr. Suwała have been opened in IPPT PAN in January 2013;
the author of this book is his associate supervisor.

2Thesis defended on the 3rd July 2010 in School of Civil Engineering, Harbin Institute of
Technology (Harbin, China).
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generally difficult and that often only small substructures are crucial and require
monitoring, which suggest that there is a need for ways of applying global SHM
approaches locally. The chapter offers an overview of the state-of-the-art in
substructuring and introduces the concept of a virtual support, which is modeled
using a pseudo load in place of its reaction force. The pseudo load is identified
by solving a type II inverse problem (load identification). A series of virtual
supports can be placed on the interface of a substructure to isolate it numerically
from the outside influences. The method splits thus the task of local monitoring
into two stages: (1) Isolation; the outside influences are numerically eliminated
from the measured response of the substructure. (2) Local SHM; all methods
aimed originally at global SHM can be used with the constructed response of the
isolated substructure. This is in contrast to other substructuring methods that
perform both stages simultaneously and require thus dedicated approaches for
local identification. The proposed method is illustrated in a numerical example
of a simple mass–spring system and then substantiated in an experimental study
using a damaged slender cantilever beam; the robustness of the isolation with
respect to unknown modifications of the outside structure is tested.

Chapter 6 describes a part of the research performed together with Qingxia
Zhang, a Ph.D. student3 co-supervised by the author together with Prof. Zhong-
dong Duan. The presented research has been performed during a two-year stay of
Ms. Zhang in IPPT PAN within the framework of project TEAM and concerns
simultaneous identification of excitations and damages, see [39, 40, 54–62]. In
practice, unknown loads and damages often coexist and can be both of interest
in applications such as bridge and traffic monitoring, forensic engineering, de-
sign code calibration, etc., but the available body of research in the topic is very
limited; the main difficulty seems to lie in very different types of the involved
unknowns and the respective inverse problems (mixed type I and type II). As a
rule, two-step iteration procedures are adopted and the unknowns are updated
separately, so that optimization proceeds in an alternate manner. This is a non-
standard approach that requires dedicated methodologies. The chapter provides
a literature review and proposes two solutions, which use the VDM to unify the
variables and avoid the alternation. The first approach represents the damages
in the form of the equivalent virtual distortions and identifies them together
with the excitation using load identification procedures (reduction to an inverse
problem of type II, see (1.3a)). The stress–strain relationships of damaged ele-
ments are then recovered and used to characterize the type and extent of the

3Thesis defended on the 22nd June 2010 in School of Civil Engineering, Harbin Institute
of Technology (Harbin, China).
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damage. The second approach proceeds the opposite way and parametrizes the
considered moving load excitation (reduction to an inverse problem of type I,
such as (1.2)). Both approaches are tested in numerical examples (using respec-
tively a modeled 3D truss structure and a modeled 2D bridge-like three span
frame structure composed of Euler–Bernoulli beams); the first approach is also
verified experimentally using the same experimental stand as in Chapter 5.

Chapter 7 considers the problem of identification of excitation loads in elasto-
plastic structures, which are governed by the well-defined model of the bilinear
isotropic hardening plasticity [32]. Plastic yield represents the damage caused by
an excessive load, and it is modeled using plastic distortions, which are imposed
on the original linear structure and processed using the methodology of the
VDM. The structure, although materially nonlinear, is assumed to be geomet-
rically linear. The direct differentiation method is employed to derive analytical
formulas for the gradients of the response with respect to the unknown excita-
tions, which allows any general-purpose gradient-based optimization approach
to be used for a fast identification. The identification is essentially formulated as
a least-squares problem, hence its Hessian is also approximated along the lines
of the Gauss–Newton approach. A numerical example of a 3D truss structure
excited by a moving load is used for verification.

Chapter 8 contains conclusions, summarizes the original results considered
to be important, and provides outlook and directions for further research.

Most load identification problems analyzed in this book are either inverse
linear problems or, thanks to the VDM, can be represented in such a form.
The Appendix provides thus an overview of the basics of linear inverse prob-
lems with the focus on the often neglected aspects that are important in load
identification: posedness, conditioning and regularization techniques for finite-
dimensional problems. First, the fundamental notions of a linear compact oper-
ator, problem posedness, conditioning and regularization are briefly discussed.
Then, integral inverse problems are reviewed. Finally, the appendix proceeds
to their numerically treatable discretized counterparts, which naturally arise in
practice due to the discrete nature of the measurement process.
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Load identification in linear structures

This chapter considers a methodology for off-line identification of transient ex-
citation forces in linear, time-invariant and spatially discretized structures, in-
cluding the time-histories and spatial characteristics of the excitation. The mo-
tivation is the need for an effective analysis technique for reconstruction of the
scenario of an unknown sudden dynamic load, which could be used in black-box
type systems. Moreover, as discussed later in this book, load identification is
crucial in structural health monitoring, as many types of structural damages
and modifications can be conveniently modeled using equivalent pseudo loads
and/or virtual distortions.

2.1 Introduction

2.1.1 Overview of the problem

As illustrated in Fig. 1.1, formulation of the direct problem, as well as the
inverse problem of load identification, requires three elements to be specified:

1. The input to the system, which are its external excitation forces. They are
assumed to act in selected Ne degrees of freedom (DOFs) of the structure
and are represented in the form of an Ne-element excitation vector f0(t).
Usually only a limited number of DOFs will be exposed to the excitation,
so that Ne ≤ Ndof, where Ndof is the total number of DOFs.

2. The output of the system, which is its mechanical response to the excita-
tion f0(t) as measured with a certain number Nr of linear sensors. Zero
initial conditions are usually assumed, and Ne ≤ Ndof. The response is
represented in the form of an Nr-element response vector, which is either

• computed in the direct problem and denoted then a(t), or

• measured to be used in the inverse problem and denoted then aM(t) in
order to emphasize that it is actually measured.
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3. The system, which is (a model of) the structure subjected to the exter-
nal excitation f0(t). Two general categories of system models are usually
considered:
• parametric model, such as the finite element (FE) model, or a
• nonparametric model, which can be specified in terms of the structural

impulse response matrix.
This chapter considers the nonparametric model, see Subsection 2.2.1.
The parametric formulation is used only to introduce the methodology
and verify its validity.

In terms of the above terminology:
The direct problem consists of computing the response a(t), given the exci-

tation f0(t) and a certain structural model.
The inverse problem of load identification consists of computing the excita-

tion f0(t), given the response aM(t) and a certain structural model.
Figure 2.1 shows a schematic example of a structure with Nr = 7 strain sensors
and Ne = 8 external excitation forces.

Figure 2.1. A 3D truss structure subjected to Ne = 8 external excitation forces and equipped
with Nr = 7 strain sensors. The total number of degrees of freedom is Ndof = 68.

2.1.2 State-of-the-art

This subsection presents a general overview of the techniques used for iden-
tification of dynamic loads. As a general baseline work in the static case, Mróz
and Garstecki [63] can be consulted, which presents a uniform formulation of
the optimum static loading problem in various design and identification tasks,
including an extension to nonlinear elastic structures.



2.1 Introduction 25

There is a continuous research effort in the field of indirect identification of
dynamic loads, see [64–71] and [72, Chapter 6] for detailed reviews and example
applications. In general, all approaches used for identification of time-history of
dynamic excitations can be categorized into two broad groups of model-based
methods and computational intelligence techniques.

The majority of the approaches considered in the literature belong to the
first group of model-based methods. These methods are aimed at identification
of the time-history of the excitation. For this purpose, they use a full model of
the loaded structure, which is most often specified in terms of the FE method.
The identification is performed either off-line, that is based on the full recorded
time-histories of the response, or online, that is based on measurement data that
are successively collected in real time, without insight into future data. The off-
line approaches reduce the identification problem to the deconvolution of the
measured structural response with respect to the impulse response function,
which is computed in advance or on-the-fly during identification (as in the dy-
namic programming approach, see [69, 73, 74]). The deconvolution is performed
in time domain [32, 73, 75, 76], in frequency domain [77–80] and [81, Chap-
ter 6], or in wavelet domain [82]. The inherent ill-conditioning of the problem
is usually addressed by using the Tikhonov regularization, that is by limiting
the ℓ2 norm of the excitation, which is well-researched and numerically efficient,
but might not be well-suited to typical load characteristics as it tends to dis-
tribute the identified excitation among all DOFs and time instances. For online
identification of excitations, Kalman filter [83], observer techniques of unknown
input estimation [84, 85], as well as inverse system filter [86–88] have been used.
The great majority of all these methods take into account only linear systems;
there are only a few papers that consider nonlinear [84, 89] or elastoplastic [32]
structures, or allow for geometric nonlinearities [90].

Methods of the other group are based on computational intelligence tech-
niques. As a rule, they are aimed at rough identification of only a limited number
of basic characteristics of the excitation, such as its location or amplitude, which
are treated as system input. The identification is based on certain numerical
fingerprints (usually wavelet expansion coefficients) that are extracted from the
measured response and treated as system output. The structural model used in
the process of identification is no longer a full model of the structure, but rather
a relationship between response fingerprints and the selected characteristics of
the excitation. Such a relationship is obtained empirically and either directly
stored, in the form of a fingerprint database, or encoded indirectly, usually in
the form of a trained neural network. As an example, a case-based reasoning
approach is used in [26, 91] with a fingerprint database for identification of the
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location of an impact on an aircraft wing, while in [92] a similar technique is
used to identify both impact location and magnitude. In [93], static loads acting
on an aircraft wing are identified by using an artificial neural network.

Approaches of both groups usually limit the considered excitation to a single
stationary point-wise force with the location known in advance, see, e.g., [94].
The location of such a force is sometimes assumed to be unknown, as in [95, 96],
and determined in a second-stage nonlinear optimization, which is performed
with respect to space. Several researches deal with a single point-wise load of
an impact type and disregard all its characteristics (time history, magnitude,
duration, etc.) besides the location [26, 97, 98].

Identification of moving loads. A relatively large body of research seems
to be devoted to the special case of indirect identification of the time-history
of a moving point-wise force (or a set of forces) from measured responses of
bridge-like structures, see a review in [71]. The moving forces are almost always
assumed to have a constant velocity and model vehicular loads; rare exceptions
are [99, 100], which consider braking vehicles. Such a problem seems to be
important in traffic studies, for assessment of pavements and bridges, for traffic
control, design code calibration, etc. In a series of publications, Chan, Law
et al. propose several general methods for indirect identification; the bridge is
modeled either as a continuous viscous beam (in a time-domain method [101]
and in a frequency-time domain method [102]) or in terms of the FE method
(as an assembly of lumped masses and massless elastic beams [103], Euler–
Bernoulli beam elements [104] or general FE elements [105]). These methods
are summarized and compared in [106–108].

The problem of identification of a moving load is not equivalent to a decon-
volution, but it still can be expressed in the form of a linear integral equation
with a weakly singular kernel. As such, it is inevitably ill-conditioned [109–112],
which seems to be the main factor that decreases the accuracy of the identifica-
tion results. In order to improve the accuracy, several regularization techniques
have been investigated and adapted for the inverse computation, including the
truncated singular value decomposition (TSVD) [113] and the Tikhonov regular-
ization, which is applied either directly [114, 115] or coupled with the dynamic
programming approach [69, 116, 117]. The optimum value of the regularization
parameter seems to be sensitive to the properties of the vehicle and the bridge;
see [118, 119] for a discussion of this problem and for a method named the up-
dated static component technique, which extracts the static component of the
load and iteratively identifies only its dynamic component.
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2.1.3 Aims and techniques

In [73], Adams and Doyle postulate several attributes that a load identifi-
cation method should feature to be usable in practice. These attributes can be
summarized into the three following points:

1. The method should address the inherent ill-conditioning of load identifi-
cation problems.

2. From a computational cost aspect, the method should have a scalability
similar to forward problems.

3. The method should allow for possibly general setups with respect to the
structure, the excitations and the instrumentation.

The problem of ill-conditioning of inverse problems is well-known, widely dis-
cussed in literature and effectively handled by techniques of numerical regu-
larization, see Subsection A.3.2. It should be however noted that the typically
used regularization criteria are based on the ℓ2 norm and tend to distribute the
identified load evenly among all the DOFs and time instances, which might not
be well-suited to typical load characteristics; see Subsection 2.4.1.2 for other
possible criteria. The other two postulates are less generally acknowledged.

In the same paper ([73], see also Doyle [74] and Uhl [69]), Adams and Doyle
propose a method that addresses their three postulates: (1) The method incor-
porates the Tikhonov regularization. (2) A dynamic programming approach is
employed to reduce the time complexity to linear with respect to the number
of the time steps, and (3) the approach of the finite element (FE) analysis is
used to model the setup in a possibly general way. However, even this approach
seems to have two important drawbacks:

1. However general is the approach of the FE method, a FE model (as any
other physical parametric numerical model) of a real-world structure is,
in fact, an additional abstraction layer between the actual structure and
the identification procedure. Such a model requires a laborious stage of
initial model updating, which for complex structures can be difficult and
time-consuming.

2. In the case of multiple independently loaded DOFs, the method proposed
in [73], as well as most other methods, use a large number of sensors in
order to ensure the uniqueness of identification. Such a rich instrumenta-
tion is often not feasible in practice, and it is not in line with the postulate
of the generality of the setup.

This chapter describes an approach that aims to address both of the above
problems:
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1. The problem of updating and a potential inadequacy of parametric nu-
merical models is resolved by using a data-driven approach: the identi-
fication is performed based on a nonparametric model of the involved
structure, which consists of a collection of impulse response functions.
Such an approach is flexible, as the impulse responses can be either di-
rectly measured or generated from an updated parametric model, pro-
vided such a model is available and accurate enough. An inevitable cost
is a larger-than-linear identification time with respect to the number of
the time steps: the approach involves the singular value decomposition of
a time-domain impulse response matrix, which might be of large dimen-
sions. In such a case, scalability of the approach can be improved by a
repetitive application in a moving time window, see the numerical and
experimental examples in Section 6.2.
A similar data-driven approach is used in Chapter 4 for identification of
structural modifications and inelastic impacts, as well as in Chapter 5 for
substructure isolation and local monitoring.

2. More insight into the identification process is provided by distinguishing
between the subspaces of reconstructible and unreconstructible compo-
nents of the excitation load. Such an approach allows the underdeter-
mined system, which arises in the case of a limited number of sensors,
to be uniquely solved in the subspace of reconstructible loads. The unre-
constructible subspace can be then used to construct an observationally
equivalent excitation that optimally approximates the actual excitation.
Compared to other methodologies, the approach described here is thus
focused on using a limited instrumentation for identification of general
dynamic loads, including loads of unknown locations as well as multiple
and moving loads.

The next Section 2.2 formulates the problem. The two consecutive Sections
2.3 and 2.4 consider respectively the overdetermined and underdetermined dis-
cretized cases, which differ in the number of available sensors. In both cases the
approach is aimed at identification of general dynamic loads of unknown loca-
tions, including simultaneous multiple impacts, distributed and moving loads. In
the underdetermined case, this generality is attained at the cost of the unique-
ness of identification, which is preserved only in the reconstructible subspace,
while in the unerconstructible subspace it can only be assured by means of ad-
ditional heuristic assumptions. These assumptions provide for the information
that was lost in the measurement process due to the limited instrumentation (in-
sufficient number of sensors) and masked by the measurement noise. The identi-
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fication is formulated as the following optimization problem: find the excitation
time-history that minimizes the discrepancy between modeled and measured
responses and which is optimum according to an assumed heuristic criterion.
The accuracy of identification is directly related to the number and placement
of available sensors. There is a relatively large body of research in optimum sen-
sor placement with the aim of accurate characterization of structural dynamic
response, often in terms of modal coordinates, see [120, 121], or for optimum
design of control systems, see [122, Chapter 7] and a review in [123]. However,
it is not clear and far from obvious that the same optimality criteria should be
used for the task of input identification. Astonishingly, the research on optimum
sensor placement with respect to load identification seems to be very sparse. In
fact, the author is aware of only two other researches devoted specifically to this
problem [124, 125]. Thus, Section 2.5 formulates two complementary optimality
measures and combines them in a single compound criterion. The importance of
optimum sensor placement is illustrated in a numerical example in Section 2.6.

2.2 Problem formulation

First, the nonparametric model based on impulse response matrices is intro-
duced and verified using a standard FE approach (Subsection 2.2.1). Then, in
Subsections 2.2.2 and 2.2.3, it is used to formulate the direct problem and the
inverse problem of load identification. Finally, certain practical problems are
discussed in Subsection 2.2.4.

2.2.1 Impulse response matrices

The structures considered in this chapter are assumed to be spatially dis-
cretized and to satisfy the standard form of the equation of motion:

Mü(t) +Cu̇(t) +Ku(t) = p(t). (2.1a)

where M, C and K denote the structural mass, damping and stiffness matrices
that have forms suitable to the particular problem. The mass matrix M is
assumed to be nonsingular (all numerical examples in this book use a consistent
mass matrix). The vector p(t) is the externally applied excitation force, and u(t)
is the vector of the displacement response. The number of degrees of freedom
(DOFs) is denoted by Ndof, so that M, C and K are Ndof×Ndof matrices, while
u(t) and p(t) are vectors of Ndof elements. Zero initial conditions are assumed,

u(0−) = 0, u̇(0−) = 0. (2.1b)
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In practice, the structure is usually excited in only a limited number Nr of its
DOFs, Nr ≤ Ndof. Placement of the excitations is encoded in the form of an
Ndof ×Ne zero–one matrix Lf, which is called the load allocation matrix,

p(t) = Lff0(t), (2.2)

where f0(t) is the Ne-element vector of the nonvanishing excitations. Similarly,
the structural response a(t) is usually measured with a limited number Nr of
sensors, Nr < Ndof. The sensors are assumed to be linear (displacement, strain,
velocity or acceleration); their placement and types are encoded in three Nr ×
Ndof sensor placement matrices La

0, La
1 and La

2,

a(t) = La
0u(t) + La

1u̇(t) + La
2ü(t). (2.3)

The methodology discussed in this chapter relies on a nonparametric model
of the loaded structure, which is given in terms of the impulse response matrix.
The above parametric formulation is used in the following only to introduce the
nonparametric modeling methodology and to verify its validity.

2.2.1.1 Full impulse response matrices

By an analogy to the standard Green’s function, the (full) impulse response
matrix of a structure that satisfies (2.1a) is defined to be the solution to the
following matrix equation:

MḦ(t) +CḢ(t) +KH(t) = δ(t)I, (2.4)

where δ(t) denotes the Dirac delta function (a unit impulse at t = 0), and I is
the Ndof×Ndof identity matrix. The solution H(t) to (2.4) is also an Ndof×Ndof
matrix,

H(t) =


H11(t) H12(t) · · · H1Ndof(t)
H21(t) H22(t) · · · H2Ndof(t)
...

...
. . .

...
HNdof1(t) HNdof2(t) · · · HNdofNdof(t)

 , (2.5)

whose each element Hij(t) denotes the displacement impulse response function,
that is the displacement response in the ith structural DOF to a unit impulse
excitation in the jth structural DOF. Notice that the impulse response matrix
can be treated as a dynamic counterpart of the static compliance matrix. This
analogy will become particularly clear in Subsection 2.2.2, where the matrix
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H(t) is used in a simple linear operation of convolution to solve the direct
problem.

The matrix H(t) is composed of displacement responses to unit impulses. It
is thus often called the displacement impulse response matrix. The (full) velocity
and acceleration impulse response matrices, Ḣ(t) and Ḧ(t), can be defined by
an analogy: they are respectively composed of the velocity and acceleration
responses in all DOFs to unit impulses applied separately in all DOFs, Ḣij(t)
and Ḧij(t), i, j = 1, 2, . . . , Ndof. There are important differences between the
displacement, velocity and acceleration impulse response matrices, which are
mainly related to the impulsive excitation at t = 0 and which can be summarized
as follows:
• The displacement does not change stepwise, and so Hij(t) is a continuous

function. In particular, the structure is initially at rest, so that

H(0) = 0. (2.6)

• The force impulse is equal to the change in momentum,

I = M
(
Ḣ(0)− Ḣ(0−)

)
, (2.7)

and the structure is initially at rest (see (2.1b)), so that

Ḣ(0−) = 0, Ḣ(0) = M−1, (2.8)

that is the velocity impulse response is discontinuous at t = 0.
• Such a step change in velocity at t = 0 must correspond to an impulsive

component in the acceleration impulse response, which can be stated
explicitly in the following form:

Ḧ(t) = M−1δ(t) + Ḧδ(t), (2.9a)

where Ḧδ(t) is the nonimpulsive component of the response,

Ḧδ(t) :=

{
limt→0+ Ḧ(t) if t = 0,
Ḧ(t) if t ̸= 0.

(2.9b)

2.2.1.2 Reduced impulse response matrix

Matrices H(t), Ḣ(t) and Ḧ(t) are called full impulse response matrices, since
they areNdof×Ndof, that is they relate the response in each DOF to an impulsive
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excitation in each DOF. Such full matrices can be obtained experimentally only
for very simple systems. However, if only a limited number Ne of excitation
forces and Nr of sensors is considered, then the respectively reduced Nr × Ne
impulse response matrix B0(t) is more convenient to use. It is defined through
the following operation:

B0(t) :=
(
La
0H(t) + La

1Ḣ(t) + La
2Ḧ(t)

)
Lf. (2.10)

If an acceleration sensor is used, the reduced impulse response matrix can con-
tain an impulsive term. In an analogy to (2.9), it can be stated explicitly:

B0(t) = La
2M

−1Lfδ(t) +B0
δ(t), (2.11a)

where B0
δ(t) is the nonimpulsive component,

B0
δ(t) =

(
La
0H(t) + La

1Ḣ(t) + La
2Ḧδ(t)

)
Lf. (2.11b)

2.2.1.3 Example

Example 2.1 (impulse responses of an undamped oscillator). Consider a simple
undamped oscillator of unit mass with the circular velocity ω, which is equipped
with a displacement sensor and a velocity sensor. The full displacement, veloc-
ity and acceleration impulse response matrices are 1 × 1 and thus equal to the
respective impulse response functions. They can be computed by solving

Ḧ(t) + ω2H(t) = δ(t), (2.12)

which yields

H(t) = Θ(t)
1

ω
sinωt, (2.13a)

Ḣ(t) = Θ(t) cosωt, (2.13b)

Ḧ(t) = δ(t)−Θ(t)ω sinωt, (2.13c)

Ḧδ(t) = −Θ(t)ω sinωt, (2.13d)

where Θ(t) denotes the Heavyside theta function (a unit step at t = 0),

Θ(t) =

{
0 for t < 0,
1 for t ≥ 0.

(2.14)
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The load allocation and sensors placement matrices are given by

Lf = [1] , La
0 =

[
1
0

]
, La

1 =

[
0
1

]
, La

2 =

[
0
0

]
. (2.15)

The reduced impulse response matrix is 2× 1 and given by

B0(t) = Θ(t)

[
ω−1 sinωt
cosωt

]
. (2.16)

Notice that the reduced impulse response matrix has the dimensions of 2 × 1,
which is larger than the dimensions of the full matrix. This is due to the sim-
plicity of the example and unlikely to happen in practice.

2.2.2 Direct problem

As defined at the beginning of the chapter, the direct problem considered
here is the problem of computing the response a(t) of a structure, given its
input f0(t) and a nonparametric model specified in terms of the reduced im-
pulse response matrix B0(t). The problem in this form is considered in Subsec-
tion 2.2.2.2. Before that, in the next subsection, the full formulation is used to
derive and verify the formulas; it is based on the equation of motion (2.1a), the
input in the form of the full excitation vector p(t), the model represented by
the full impulse response matrix H(t) and the full response vector u(t) being
the desired output.

2.2.2.1 Full formulation

For a structure initially at rest, the solution to the full direct problem, that
is the structural response u(t) in all DOFs to a given full vector p(t) of the
excitation forces, can be expressed in the form of the following convolution of
the excitation with the full impulse response matrix:

u(t) =

t∫
0

H(t− τ)p(τ) dτ. (2.17a)

The velocity response is obtained by differentiating (2.17a),

u̇(t) = H(0)p(t) +

t∫
0

Ḣ(t− τ)p(τ) dτ =

t∫
0

Ḣ(t− τ)p(τ) dτ, (2.17b)
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where the first term has vanished due to (2.6). Another differentiation yields the
acceleration response. The impulsive component M−1δ(t) in the acceleration
impulse response Ḧ(t), see (2.9), results in the presence of a nonvanishing feed-
through term, which by (2.8) equals M−1p(t),

ü(t) = Ḣ(0)p(t) +

t∫
0

Ḧ(t− τ)p(τ) dτ

= M−1p(t) +

t∫
0

Ḧ(t− τ)p(τ) dτ.

(2.17c)

The impulsive component in the acceleration impulse response is already re-
flected in the feed-through term, so that it has no influence on the convolution
term, which, due to (2.9b) and the definition of an improper integral, depends
only on the nonimpulsive component Ḧδ(t),

t∫
0

Ḧ(t− τ)p(τ) dτ = lim
t0→t−

t0∫
0

Ḧ(t− τ)p(τ) dτ =

t∫
0

Ḧδ(t− τ)p(τ) dτ. (2.18)

The validity of the solution given by (2.17) can be verified by a direct sub-
stitution into the equation of motion (2.1a),

Mü(t) +Cu̇(t) +Ku(t)

= M

M−1p(t) +

t∫
0

Ḧ(t− τ)p(τ) dτ


+C

t∫
0

Ḣ(t− τ)p(τ) dτ +K

t∫
0

H(t− τ)p(τ) dτ

= p(t) +

t∫
0

(
MḦ(t− τ) +CḢ(t− τ) +KH(t− τ)

)
p(τ) dτ

= p(t) + lim
t0→t−

t0∫
0

δ(t− τ)p(τ) dτ

= p(t),

(2.19)

where the definition of an improper integral and (2.4) have been used.
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The operator notation allows (2.17) to be stated in a more concise form,

u(t) = (Hp) (t), (2.20a)

u̇(t) =
(
Ḣp

)
(t), (2.20b)

ü(t) = M−1p(t) +
(
Ḧδp

)
(t)

=
(
Ḧp

)
(t),

(2.20c)

where H, Ḣ and Ḧδ denote the matrix operators of convolution with the respec-
tive impulse response matrices and Ḧ = M−1I + Ḧδ, where I is the identity
operator.

2.2.2.2 Reduced formulation

The corresponding formulas for the reduced version of the direct problem can
be obtained by using (2.2) in (2.20) in place of the full excitation vector p(t),
and then by substituting the result into (2.3). This yields

a(t) =
(
La
0HLff0

)
(t) +

(
La
1ḢLff0

)
(t)

+ La
2M

−1Lff0(t) +
(
La
2ḦδL

ff0
)
(t),

(2.21)

which, by (2.11) and the definition of the operators H, Ḣ, Ḧ and the improper
integral, reduces to

a(t) = Gf0(t) +
(
B0

δf
0
)
(t)

=
(
B0f0

)
(t),

(2.22a)

where the matrix G represents the feed-through term,

G = La
2M

−1Lf, (2.22b)

the matrix operator B0
δ corresponds to the convolution with the reduced impulse

response matrix B0
δ(t),

B0
δ =

(
La
0H+ La

1Ḣ+ La
2Ḧδ

)
Lf, (2.22c)

and B0 = GI +B0
δ . Due to the presence of Lf

2, the feed-through matrix G can
be nonvanishing only if accelerometer sensors are used.
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In the integral notation, (2.22a) takes the following form:

a(t) = Gf0(t) +

t∫
0

B0(t− τ)f0(τ) dτ, (2.23)

where, as in (2.17c), the possible impulsive component in B0(t) is reflected in
the feed-through term, so that it has no influence on the convolution term, which
depends only on the nonimpulsive component B0

δ(t),

t∫
0

B̈0(t− τ)p(τ) dτ = lim
t0→t−

t0∫
0

B̈0(t− τ)p(τ) dτ

=

t∫
0

B̈0
δ(t− τ)p(τ) dτ.

(2.24)

2.2.3 Inverse problem

The inverse problem of load identification is the problem of identifying the
unknown excitation forces f0(t), given the reduced impulse response matrix
B0(t) (or, equivalently, the corresponding operator B0), which is in fact a re-
duced nonparametric model of the structure, and the vector of sensor measure-
ments aM(t). The unknown excitation is identified by comparing the structural
response a(t) modeled by (2.23) with the actually measured response aM(t) and
finding such a vector f0(t) that makes them equal. This yields the following
equation:

aM(t) = Gf0(t) +

t∫
0

B0(t− τ)f0(τ) dτ

= Gf0(t) +
(
B0

δf
0
)
(t)

=
(
B0f0

)
(t),

(2.25)

which is a linear system of Volterra integral equations with a continuous or
weakly singular kernel, see Definition A.10. A theoretically important, even if
idealized case occurs if the feed-through matrix G is square and nonsingular.
The problem of identification is then equivalent to solving

G−1aM(t) = f0(t) +G−1
(
B0

δf
0
)
(t), (2.26)
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which is a linear system of Volterra integral equations of the second kind, and as
such, it is well-posed and uniquely solvable for every measurement vector aM(t),
see Theorem A.16. The identification is usually performed in a certain time
interval t ∈ [0, T ], where T is the total measurement time.

For reasons discussed in Subsection 2.2.4.1, only first kind Volterra equations
(2.29) might be encountered in practice. Moreover, only discretized versions of
(2.25) or (2.26) are used in real applications, as discussed in Subsection 2.2.4.2.
They are both extremely ill-conditioned and can be numerically treated in a
similar way, see Sections 2.3, 2.4 and 2.5.

2.2.4 Practical considerations

The inverse problem, as formulated in Subsection 2.2.3, relies on two follow-
ing assumptions:

1. The reduced impulse response matrix B0(t) is available.

2. The time is continuous.

Both assumptions are hard to justify in practice, and so the formulation should
be respectively modified to take it into account.

2.2.4.1 Experimental quasi impulsive excitations

The reduced impulse response matrix B0(t) is composed of the responses to
impulsive excitations. If an updated parametric model of the considered struc-
ture is unavailable to perform numerical simulations, these responses must be
measured experimentally. However, an ideal impulse excitation is impossible to
apply and so the exact impulse responses cannot be obtained. Nevertheless,
it is still possible to measure the responses Bij(t) of the considered sensors,
i = 1, . . . , Nr, to any quasi impulsive excitation qj(t), j = 1, . . . , Ne, which
is technically feasible and easy to apply (for example with a modal hammer).
These responses compose the reduced quasi impulse response matrix B(t). The
quasi impulsive excitations are assumed to vanish for t < 0, that is qj(t) = 0
and B(t) = 0 for t < 0.

The reduced quasi impulse response matrix B(t) constitutes a nonparametric
model of the structure that is reduced with respect to the considered placement
of sensors and excitations, which is exactly the same as in the case of the re-
duced impulse response matrix B0(t), but B(t) is additionally reduced also with
respect to the experimentally applied quasi impulsive excitations qj(t).
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Direct problem. The reduced impulse response matrix B0(t) can be used to
express the sensor response to any excitation, while the reduced quasi impulsive
matrix B(t) can be used to express the response to an excitation only if it can
be expressed (as a convolution) in terms of the quasi impulsive excitations qj(t).
That is, if the excitations f0j (t) can be expressed for all j = 1, . . . , Ne in the
following form:

f0j (t) =

t∫
0

qj(t− τ)fj(τ) dτ, t ∈ [0, T ], (2.27a)

where fj(t) are certain unknown functions, or, in the operator notation, if the
excitation vector f0(t) satisfies

f0(t) = (Qf) (t), (2.27b)

where Q denotes the diagonal matrix convolution operator that corresponds to
(2.27a) collected for all j = 1, . . . , Ne, then the sensor response to f0(t) can be
obtained through a substitution of (2.27b) into (2.22a). This yields

a(t) = (Bf) (t), t ∈ [0, T ], (2.28a)

where the matrix operator B,

B = GQ+B0
δQ

= B0Q,
(2.28b)

corresponds to the convolution with the experimentally measured quasi impulse
responses Bij(t) to the actually applied quasi impulsive excitations qj(t), that is

a(t) =

t∫
0

B(t− τ)f(τ) dτ, t ∈ [0, T ]. (2.28c)

Technically speaking, as a result of limitations of instrumentation, the space
of considered excitations is restricted to the range of the matrix integral opera-
tor Q. In practice, the quasi impulsive excitations can be generated by a modal
hammer and have then the form of narrow diffuse peaks. Then the operator Q
effectively corresponds to a low-pass filter with a relatively high cut-off level
that slightly limits the frequency content of the considered excitations; in prac-
tice, such a limitation might be numerically beneficial due to the well-known
stronger ill-conditioning of high frequency components in deconvolution-type
problems [111, 126].
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Inverse problem. Similar as in Subsection 2.2.3, solving the inverse problem
amounts to comparing the experimentally measured response aM(t) to the re-
sponse modeled with (2.28a), finding the function f(t) that solves the resulting
equation, and finally computing the corresponding excitation by (2.27b). As a
result, the two crucial equations in this case are:

aM(t) = (Bf) (t), (2.29a)

f0(t) = (Qf) (t). (2.29b)

In the considered case, the experimentally applied excitations qj(t) are only
quasi impulsive and not impulsive, so that the resulting quasi impulse response
matrix B(t) contains no impulsive terms, and (2.29) is a linear system of Volterra
integral equations of the first kind. However, notice that if the exact impulse
responses are known (or a parametric structural model is available for simula-
tions), then Q = I, f0(t) = f(t) and (2.29) reduces to (2.25).

2.2.4.2 Time discretization

In applications, the measurement process discretizes the responses by sam-
pling them at equally spaced time instances t1, . . . , tNt . Similarly, numerically
simulated solution is also advanced in discrete time steps. In practice, the im-
pulse response functions will be thus discrete, whether obtained from mea-
surements or from numerical simulations, so that (2.29) should be discretized
with respect to time. Due to the discrete nature of measurements and impulse
responses, the quadrature discretization method is appropriate, see Subsec-
tion A.2.3.1. For the first equation, (2.29a), the method yields Nt discrete linear
systems that all share the same unknowns fi(tk),

aM(tk) =
k∑

l=1

αklB(tk − tl)f(tl), k = 1, . . . , Nt, (2.30)

where αkl are quadrature weights and Nt is the number of time steps. All these
systems can be merged together and stated in the form of a single large matrix
linear equation. Together with a similarly discretized (2.29b), they read

aM = Bf , (2.31a)

f0 = Qf , (2.31b)

where the vector aM collects for all time steps the discrete measurements of all
sensors, and the vectors f and f0 collect the discretized convolution function
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f(t) and the excitations in all potential excitation points, respectively. With a
proper ordering of the components of these vectors, the matrix B in (2.31a)
takes the form of a large structured matrix: it is an NrNt ×NeNt block matrix
with Toeplitz blocks, where each block is square (Nt × Nt), lower triangular
and relates the discrete response of a single sensor to the discrete excitation in a
single excitation point, [Bij(tk − tl)]k,l, see an example in Fig. 2.3. As mentioned
in the previous subsection, if the discrete impulse responses are obtained from
numerical simulations or by deconvolving the measurements, then Q = I and
f0(t) = f(t).

Matrix B is dense, even if it is structured, and the numbers of equations
and unknowns are both proportional to the number Nt of the time steps. If the
time discretization is dense or a longer sampling time T is used, the system can
become prohibitively large and hardly manageable computationally. However,
if Q = I and a (piecewise) continuity of excitations is expected, then the time
discretization can be often assumed to be dense enough as to allow the load to be
effectively approximated by splines or wavelets, load shape functions [56, 60], etc.
This would reduce the numerical costs and improve the numerical conditioning.
Equations (2.31) take then the following form:

aM = BNα, (2.32a)

f0 ≈ Nα, (2.32b)

where f0 = f and the columns of the matrix N contain the approximating
functions and the approximating coefficients α are far fewer in number then the
original unknowns f0.

2.2.4.3 Regularization and numerical solution

Equation (2.29a) is usually of the first kind, so that solving a load identifi-
cation problem amounts theoretically to applying an (approximate) inverse of
a compact integral operator. Since the inverse of such an operator cannot be
bounded (Theorem A.7), the original continuous-time identification problem is
inherently ill-posed, see Subsection A.2.2.1. Consequently, its discretized version
(2.31a) has a seemingly contradictory property: the finer time discretization is
used, the more ill-conditioned they become. As a result, a naive direct solu-
tion is hardly possible, unless the considered setup is extremely simplistic. In
practice, the discretized system is always extremely ill-conditioned [127], even
in the idealized case of the second kind equation (2.26), and as a rule, a robust
numerical regularization technique is necessary, see [67, 109–112, 128–132] or a
short overview in Subsection A.3.2.



2.2 Problem formulation 41

This book uses the following three general schemes of numerical solution
of (2.31), which have significantly different properties in terms of their time
complexity; two of them are based on well-known approaches of numerical reg-
ularization. In the following, the time complexities are assessed under the as-
sumption that the decisive factor is the number Nt of the time steps, so that
Nr ≪ Nt and Ne ≪ Nt.

Conjugate gradient least squares (CGLS). If the system is overdeter-
mined, which depends on the number of excitations and sensors that provide
independent measurements (and possible additional a priori assumptions as
in (2.35)), and the number of time steps is relatively large, the time-domain
iterative approach of the CGLS method is used [111, 128]. The CGLS method
has well-known regularizing properties, and it is also relatively fast and conve-
nient in implementation. The number of iterations Niter depends on the spectral
characteristics of the excitation and the measurement noise level, and it plays
the role of the regularization parameter (well-conditioned low frequency compo-
nents of the excitation are extracted before the ill-conditioned high-frequency
components); as a rule, it is significantly smaller than the dimensions of the
system, see [109–111, 126]. Moreover, the system matrix B is used in the al-
gorithm only in the form of matrix–vector multiplications, and as a structured
matrix it can be stored in memory in a reduced form, so that the multiplica-
tions can be quickly computed by embedding the Toeplitz submatrices of B
in larger circulant matrices and using the fast Fourier transform (FFT) in time
O(Nt logNt) instead of O(N2

t ), see [133]. As a result, the overall time complexity
is O(NiterNt logNt).

Deconvolution in frequency domain. In a few suitable cases (Sections 4.3
and 5.5), the overdetermined system is solved in frequency domain, which sig-
nificantly improves the computational efficiency, because (2.31a) reduces then
to a series of Nt small independent systems (Nr ×Ne), so that the overall time
complexity is O(Nt logNt) and a larger number of time steps Nt can be then
used. However, this approach does not offer such a direct control over the level
of numerical regularization as the other two approaches (CGLS, SVD), so that
serious inaccuracies related to the spectral leakage of the finite length FFT are
often introduced, and a proper selection of the windowing function and the
window decay rate is extremely important.

Singular value decomposition (SVD). In other cases, the SVD of the ma-
trix B is performed [128]. If the system is underdetermined, the SVD allows the
reconstructible and unreconstructible excitation subspaces to be determined and
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separately analyzed; it is also required by the proposed criteria of sensor place-
ment optimality. The time complexity of computing the SVD is O(N3

t ) [133], so
that it is a numerically costly operation, which can be applied only in cases of
relatively short time intervals. If an analysis in a longer time interval is necessary,
it might be pursued using a moving time window technique, as in Section 6.2.
However, for a given system, the SVD needs to be computed only once, and
each subsequent identification uses the already computed decomposition and it
is thus an order of magnitude quicker.

2.3 Overdetermined case

If the discretized (2.31a) is not underdetermined, it has a unique least squares
solution, which can be found by minimizing the norm of the residuum of the
system. The underdeterminacy depends on many factors, such as the topology
of the structure as well as the number, placement and types of available sensors,
and for large matrices it is not easy to be quickly verified in practice. However,
as a rule of thumb, the equation might be supposed to have a unique least
squares solution, if all of the following general conditions are satisfied:

1. There are at least as many sensors as excitations (Nr ≥ Ne) in order to
ensure that the equations are not fewer in number than the unknowns.

2. The sensors are placed reasonably close to the excitations, to ensure a
high signal-to-noise ratio.

3. The sensors are placed not too close to each other, to make their mea-
surements independent.

The unique least-squares solution can be computed directly by using the
Moore–Penrose pseudoinverse of the system matrix B,

B+ =
(
BTB

)−1
BT. (2.33)

The pseudoinverse can be also computed via the singular value decomposition of
the matrix B [128]. The SVD also allows too small singular values to be directly
truncated, which is a common regularization technique (TSVD). However, as
the system matrix is usually very large, a quicker and less memory-consuming
way is to use a regularizing iterative method. The CGLS method1 minimizes

1An alternative name used for the CGLS method is the method of conjugate gradient
normal equations (CGNE).
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the norm of the residuum of (2.31) by using the conjugate gradient iterations
to solve the associated normal equation,

BTaM = BTBf . (2.34)

The CGLS seems to be appropriate, as it quickly converges and has very good
regularizing properties, see [128, Chapter 11]. A comprehensive discussion of
this and other iterative solvers for Toeplitz systems can be found in [134], see
also [109, 111]. In these methods, the number of iterations usually plays the
role of the regularization parameter: the more iterations, the less regularized is
the solution. As a result, the iteration has to be stopped after a certain number
of steps. If the CGLS iteration is stopped too early, the computed solution is
inaccurate due to the still too large residuum of (2.34) or (2.31a); if it is stopped
too late, the solution is inaccurate due to the ill-conditioning and amplification
of the measurement errors. Thus, a proper termination condition is crucial. As
it is not always easy to be properly formulated, sometimes hybrid methods are
advocated [109, 128], which compute the least squares solution of the following
augmented system: [

B
αTQ

]
f =

[
aM

0

]
, (2.35)

where α ≥ 0 is the Tikhonov regularization coefficient that controls the regu-
larization level. The matrix T is usually the identity matrix of appropriate di-
mensions, but, in order to account for smoother loads, it can be also the matrix
of the first or second differences with respect to time and/or space. A common
method of assigning a value to the regularization parameter, whether it is α or
the number of the iterations, is the L-curve technique [67, 111, 135]. The rest of
this section contains a concise derivation of the classic version of the CGLS opti-
mization algorithm as applied to the inverse problem of load identification that
is considered here. Notice that there are many alternative formulations, which
are mathematically equivalent in the exact arithmetic, but may have different
properties in floating point arithmetics, as well as different time complexities
and storage requirements [128, 136, 137].

The CGLS solution is retrieved iteratively by minimizing the norm of the
residuum r(f) of either (2.31a) or (2.35). In both cases, the objective function
can be stated as

F (f) =
1

2
∥r(f)∥2, r(f) := aM −Bf , (2.36)

where either the original matrix B and vector aM or their augmented versions
(2.35) are used. The gradient and the (positive semidefinite) Hessian of the
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objective function with respect to the excitation vector f can be computed as

∇F (f) = −BTr (f) , ∇2F (f) = BTB. (2.37)

The optimization starts with the first approximation f0 (which may be equal
to 0) and proceeds iteratively according to

fn+1 := fn + sn∆fn, (2.38)

where sn ∈ R minimizes the objective function F (fn + sn∆fn) along the direc-
tion of optimization ∆fn, which is computed as a certain linear combination of
the steepest descent direction −∇F and the direction of optimization from the
previous iteration:

∆f0 := BTr(f0), (2.39a)

∆fn := BTr(fn) + ηn−1∆fn−1. (2.39b)

The combination coefficient ηn−1 ∈ R is chosen in such a way that the directions
∆fn and ∆fn−1 are conjugate with respect to the Hessian,

∆fT
n

(
BTB

)
∆fn−1 = 0, (2.40)

which, together with (2.39a), automatically ensures that all the directions of
optimization are conjugate, see [128, 137]. The result of this conjugacy and the
whole rationale behind the conjugate gradient method is that, in each iteration,
fn is the minimum in the subspace spanned by all the previous directions of op-
timization, ∆f0, . . . ,∆fn−1, or, equivalently (see (2.39) and (2.37)), in the sub-
space spanned by all the gradients −BTr(f0), . . . ,−BTr(fn−1). Consequently,
the gradient at fn is orthogonal to this subspace, and the following two formulas
hold: (

BTr(fn)
)T

∆fn−1 = 0, (2.41)(
BTr(fn+1)

)T
BTr(fn) = 0, (2.42)

which state that the gradient in a given iteration is orthogonal to the previous
direction of optimization as well as to the gradient in the next iteration.

Left-multiplication of (2.39b) by BTr(fn) transposed yields, due to the or-
thogonality (2.41), (

BTr(fn)
)T

∆fn = ∥BTr(fn)∥2. (2.43)
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The objective function is quadratic. Therefore, due to (2.37) and (2.43),

F (fn+1) = F (fn + sn∆fn) = F (fn)− sn∥BTr(fn)∥2 +
1

2
s2n∥B∆fn∥2, (2.44)

and this is a convex quadratic function with respect to sn, which has the mini-
mum at

sn =
∥BTr(fn)∥2

∥B∆fn∥2
. (2.45)

Substitution of (2.39b) into the conjugacy criterion (2.40) yields

ηn = −(B∆fn)
TBBTr(fn+1)

∥B∆fn∥2
. (2.46)

The iteration formula (2.38) leads to the following iteration for the residual
vectors:

r(fn+1) = r(fn)− snB∆fn, (2.47)

which, left-multiplied by BBTr(fn+1) transposed and due to (2.42), (2.45) and
(2.46), finally yields

ηn =
∥BTr(fn+1)∥2

∥BTr(fn)∥2
. (2.48)

Flow of computations of the CGLS algorithm is outlined in Table 2.1. If the
original unregularized (2.31a) is being solved, the stop condition for terminating
the iterations has to be based on online analysis of the L-curve; otherwise, if the
augmented (2.35) is used, the norm ∥r∥ of the residuum vector can be used for
this purpose.

Notice that the most time-consuming operations in each loop are the calcu-
lations of the matrix-vector products B∆f (response, line 1) and BTr (steepest
descent, line 5), especially if the matrix B is of large dimensions. However,
such products can be relatively quickly computed by taking into account that
the system matrix B is a structured (block matrix with Toeplitz blocks). The
fast Fourier transform can be thus used for accurate computations of matrix-
vector products in frequency domain, which decreases the numerical costs from
O(NrNeN

2
t ) to O(NrNeNt logNt) [133, 138]. This is a significant difference, as

the number of time steps Nt in most applications can be expected to be much
larger than the numbers of sensors and excitations, Nr and Ne.
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Table 2.1. Flow of computations of the CGLS algorithm for load identification in the linear
overdetermined case.

Initialization

1) first approximation f = f0
2) residuum vector r = aM −Bf
3) steepest descent direction d = BTr
4) optimization direction ∆f = d
5) gradient norm d1 = dTd

The loop

1) response to ∆f q = B∆f
2) line minimum s = d1/q

Tq
3) update load vector f+ = s∆f
4) update residuum vector r− = sq
5) steepest descent direction d = BTr
6) temporary storage d2 = d1
7) gradient norm d1 = dTd
8) combination coefficient η = d1/d2
9) update optimization direction ∆f = d+ η∆f

2.4 Underdetermined case

All research in indirect load identification of which the author is aware of
deals with the overdetermined case only. However, in intended general practical
applications, the discretized linear system (2.31a) will be usually severely under-
determined, that is there will be significantly fewer equations than unknowns.
The reason is twofold:

1. In real-world applications the number of sensors is limited by practical
reasons. Thus, unless a specific setup is considered, in many situations
there will be much more potentially load-exposed DOFs than available
sensors.

2. Even with a sufficiently large number of sensors, excessive ill-conditioning
or a specific topology of the considered structure can decrease the numer-
ical rank of the system matrix B and make it effectively underdetermined
or rank-deficient.

As the result, in the overdetermined case the generality of the identified excita-
tion must be significantly limited. In literature, it is often assumed to be a single
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stationary (or moving at a constant velocity) point-wise force, whose location
is assumed to be known in advance or determined in an additional outer-loop
nonlinear optimization; distributed, freely moving or multiple excitations are
usually not considered. The approach proposed here aims to address the gen-
eral underdetermined case directly and allows all general excitation patterns to
be taken into account. However, in an underdetermined system part of the in-
formation is lost and unrecoverable from the measurements, and therefore such
a generality is possible only at the cost of the uniqueness of identification, which
can be attained by additional a priori assumptions only. Such assumptions can
be used to complete the missing information by specifying expected or typical
characteristics of the excitation.

In general, in the underdetermined case, the unknown discrete vector f can
be identified in two ways, which differ in their accuracies and numerical costs
per single identification (in terms of computation time, memory storage, etc.):

Single-stage identification (Subsection 2.4.2). The simpler but less accurate
approach, which transforms the underdetermined system (2.31a) into a
larger overdetermined system by means of the mentioned additional as-
sumptions (that may also have a regularizing effect on the solution). If
the assumptions are based on the ℓ2 norm, then the augmented system is
linear and it can be solved using the CGLS method presented in Table 2.1;
direct solution techniques are also possible, but they can be prohibitive in
terms of the numerical costs. Otherwise, the augmented objective func-
tion can be minimized using standard optimization techniques.

Decomposition of excitation (Subsection 2.4.1), which is the more accurate
approach. It makes use of the singular value decomposition of the ma-
trix B, which is a numerically costly operation, but needs to be per-
formed only once irrespective of the number of the intended identifi-
cations. Thereupon, given a measured response vector aM, two com-
plementary components of the corresponding excitation f0 can be rela-
tively quickly identified: the reconstructible component and the unrecon-
structible component. The former is fully specified by the measurements,
while the latter is related via Q to the effective null space of B and can
be identified based on the additional a priori assumptions.

2.4.1 Decomposition of excitation

The system matrix B, which is assumed here to be underdetermined, has a
singular value decomposition, which is the finite-dimensional counterpart of the
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singular value expansion (SVE) of the corresponding integral operator, see [110–
112],

B = UΣVT. (2.49)

The matrices U and V are square and unitary,

UTU = UUT = I, VTV = VVT = I. (2.50)

The columns of U constitute thus an orthonormal base in the space of discrete
measurements, while the columns of V form such a base for the space of vec-
tors f . The dimensions of U and V equal respectively the total number NrNt of
measurements (rows of B) and the total number NeNt of unknown excitations
(columns of B). The matrix Σ is a rectangular diagonal matrix of appropriate
dimensions; its diagonal values σi are called the singular values of B and are
ordered nonincreasing. The SVD is unique up to the permutation of the singular
values [139].

Due to the inherent ill-conditioning or ill-posedness of the considered inverse
problem, the discretized system (2.31a) is, as a rule, extremely ill-conditioned.
This is indicated by the fact that its singular values span across several orders of
magnitude, see Subsection A.2.2.1. Numerical regularization is therefore neces-
sary and, computed the SVD, it can be straightforwardly performed by zeroing
too small singular values, which is an approach called the truncated singular
value decomposition, see Subsection A.3.2. The threshold level is assumed here
to be the expected relative measurement accuracy ϵ ≥ 0. In this way, the mod-
ified diagonal and system matrices Σϵ, Bϵ are obtained and (2.49) takes the
following regularized form:

Bϵ = UΣϵVT. (2.51)

In the idealized case of ϵ = 0 (no measurement error), all singular values are
preserved and Bϵ = B.

Let F = RNeNt denote the linear space of all vectors f . Let split the matrix
V into two submatrices Vϵ

1 and Vϵ
2,

V =
[
Vϵ

1 Vϵ
2

]
, (2.52)

by including in Vϵ
1 these columns of V that correspond to singular values greater

than ϵ. The columns of Vϵ
1 and Vϵ

2 span two orthogonal and complementary
linear subspaces Fϵ

1 and Fϵ
2 of F:

Fϵ
1 = spanVϵ

1, Fϵ
2 = spanVϵ

2, F = Fϵ
1 ⊕ Fϵ

2. (2.53)
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Moreover, the columns of Vϵ
2 correspond to the singular values σi < ϵ that

vanish in Bϵ. Thus, Fϵ
2 is the null space of Bϵ and

BϵVϵ
2 = 0. (2.54)

As a result, the regularized system matrix Bϵ is a linear operator that represents
the (discretized) measurement process, which effectively:

1. Transforms F orthonormally by V.

2. Uses Σϵ to

(a) Irreversibly lose a part of the information by a projection onto Fϵ
1.

(b) Rescale the resulting subspace along the base directions by the remain-
ing singular values.

3. Transforms the result orthonormally by U.
Therefore, Fϵ

1 is the reconstructible subspace of F and the null space Fϵ
2 is its

unreconstructible subspace with respect to the regularized system matrix Bϵ. As
a result, given the relative measurement accuracy ϵ ≥ 0, each vector f ∈ F can
be uniquely decomposed into a sum of two orthogonal components that belong
to Fϵ

1 and Fϵ
2:

f = Vϵ
1m1 +Vϵ

2m2 = f ϵR +Vϵ
2m2. (2.55)

Consequently, see (2.54),
Bϵf = Bϵf ϵR. (2.56)

In other words, the first component in (2.55),

f ϵR = Vϵ
1m1, (2.57)

is a linear combination of the columns of the matrix Vϵ
1; it is thus uniquely

reconstructible from the measurements aM. The second component, Vϵ
2m2, is a

linear combination of the columns of Vϵ
2 and so it belongs to the null space of

Bϵ. As a result, this component is unreconstructible: due to (2.54) all respective
information is lost in the measurement process or masked by the measurement
noise, and thus effectively not retained in the measurement vector aM.

In the above, the space F of all vectors f is decomposed into a sum of two
complementary subspaces Fϵ

1 and Fϵ
2. Due to (2.31b), the space of all considered

excitation vectors f0 is given by QF, and QFϵ
1 and QFϵ

2 are its reconstructible
and unreconstructible subspaces. Consequently, each excitation vector f0 can be
decomposed into a sum of two components, of which one is reconstructible from
the measurements and the other is unreconstructible.
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2.4.1.1 Reconstructible component

Assume that the (noisy) measurements aM and the regularized system ma-
trix Bϵ are known. The unique regularized reconstructible component f ϵR of the
corresponding vector f is the minimum-norm solution of the regularized version
of (2.31a). It can be directly computed as

f ϵR = (Bϵ)+ aM. (2.58)

The matrix (Bϵ)+ is the Moore–Penrose pseudoinverse of the regularized ma-
trix Bϵ,

(Bϵ)+ = V (Σϵ)+UT, (2.59)

where the diagonal matrix (Σϵ)+ is computed from Σϵ by a transposition and
replacement of all its nonzero elements by their reciprocals.

Alternatively, the regularized reconstructible component f ϵR can be also found
by solving in the least square sense the system

aM = BϵVϵ
1m

ϵ
1 (2.60)

using any suitable direct or iterative method, for example the CGLS technique
described above for the overdetermined systems. Equation (2.60) is already reg-
ularized, hence the criterium for termination of iterations can be based on the
norm of the residuum, without an additional Tikhonov regularization term.
Given mϵ

1, (2.57) can be used to compute f ϵR.
Finally, by (2.31b), given the regularized reconstructible component of f , the

equivalent regularized reconstructible component of the excitation vector f0 is
equal to Qf ϵR.

2.4.1.2 Unreconstructible component

As confirmed by (2.54) and (2.56), given the regularized reconstructible com-
ponent f ϵR, any linear combination of the columns of Vϵ

2 can be added to f ϵR with
no or a negligible2 effect on the response aM. Therefore, all vectors of the form

f(m2) = f ϵR +Vϵ
2m2, (2.61)

where m2 is a vector of arbitrary coefficients, are valid solutions to (2.31a);
by (2.31b), they all correspond to excitation vectors that are observationally
indistinguishable.

2Negligible, that is below the assumed level ϵ of the measurement noise.
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As a result, the choice of the particular vector of coefficients m2 and the
corresponding excitation vector

f0(m2) = Qf(m2)

= Qf ϵR +QVϵ
2m2,

(2.62)

must be based on additional criteria, which have to be formulated in advance,
for example based on anticipated or typical characteristics of the excitation,
such as nonnegativity, norm-minimality, smoothness, sparsity, etc.

Nonnegativity. Such a case seems to occur relatively often in practice, for
example in identification of moving vehicular loads or impact type excitations; it
is thus of practical significance. Such a criterion can be formalized by requiring
that f0(m2) has the minimum norm of its negative components, that is by
minimizing the following objective function:

F2(m2) :=
1

2

∑
i

(
f0i (m2)If0

i (m2)<0

)2
, (2.63)

where f0i (m2) is the ith component of the excitation vector f0(m2) and Ip
denotes the indicator function,

Ip :=

{
1 if p is true,
0 otherwise.

(2.64)

The objective function (2.63) has two important advantages:
1. It can be quickly computed together with its gradient.
2. It is a convex function with respect to m2, so that each its local minimum

is also a global minimum.

Norm-minimality, smoothness, etc. These criteria can be formalized, e.g.,
by requiring that m2 minimizes

F2(m2) :=
1

2

∥∥Tf0(m2)
∥∥2 . (2.65)

The result depends on the matrix T, which, depending on the application, can
be for example the matrix of the first or second differences with respect to time
and/or space3 Minimization of F2(m2) is equivalent to computing the solution
of

TQVϵ
2m2 = −TQf ϵR (2.66)

3It makes not much sense to select the identity matrix: the reconstructible component is
orthogonal to the null space of Bϵ, and so if T is the identity matrix, then the optimum
excitation is obtained for m2 = 0.
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in the least squares sense, which can be performed using the CGLS algorithm
from Table 2.1 or even directly, provided the dimensions of the matrices make
it feasible. In the latter case, see (2.33),

f0 =
(
I−QVϵ

2 (TQVϵ
2)

+T
)
Qf ϵR. (2.67)

Notice that the optimum excitation f0 is linearly dependent on the regular-
ized reconstructible excitation component Qf ϵR as well as on the measurement
vector aM, see (2.58).

In both of the above cases, a scrupulous analysis would reveal that upper
bounds should be in principle imposed on the moduli of the entries of m2 that
correspond to the columns of Vϵ

2 that do not belong to V0
2. These columns

correspond to very small positive singular values (less than ϵ) and represent the
excitations that do influence the measurement vector aM, but below the assumed
noise level. Such a formulation would require a constrained least squares problem
to be solved to find m2 and the related optimum excitation.

Sparsity. The objective function (2.63) is based on the ℓ2 norm of the vec-
tor Tf0(m2). If T = I, then this norm prefers even distribution of the excitation
in time and space over sparsity, which in many practical cases might be exactly
the opposite of the expected characteristics of the load [80]. The requirement of
sparsity might be formalized in terms of the “ℓ0 norm” (the number of nonva-
nishing elements), which however leads to NP-hard combinatorial optimization
problems [140]. A solution commonly used in this case is the ℓ1 norm. The
corresponding optimization problem,

F2(m2) :=
∥∥Tf0(m2)

∥∥
1
, (2.68)

remains convex and it is thus numerically treatable, while it still seems to prefer
sparse solutions [140].

2.4.2 Single-stage identification

In the single-stage identification approach, no distinction is made between
the reconstructible and unreconstructible subspaces of the excitation space: both
components are retrieved simultaneously. The numerically costly singular value
decomposition is not required. However, this is at the expense of a higher nu-
merical cost of each identification. The approach is simpler but generally less
accurate, because both identified components are influenced by the a priori as-
sumptions, while in the two-stage approach described above they influence only
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the unreconstructible component (the reconstructible component is identified
based only on the measurements).

The original system (2.31a) is assumed to be underdetermined and to have
an infinite number of solutions. Thus the norm of its residuum, (2.36), does
not have a strict minimizer. However, the squared norm of the residuum of the
augmented system (2.35),

F (f) =
1

2
∥aM −Bf∥2 + 1

2
α∥TQf∥2, (2.69)

includes also the Tikhonov term, which can be thought of as playing a double
role:

1. Numerical regularization of the solution to alleviate the ill-conditioning
of the matrix B.

2. Supplying the additional information, which is used (in the place of the
information lost due to underdetermination) in order to guarantee the
uniqueness of identification.

Therefore, the unique solution can be found by a direct minimization of the
augmented objective function (2.69), which corresponds to finding the least
squares solution of (2.35) and can be performed by the CGLS method described
in Table 2.1. Besides the Tikhonov term, the additional information can be
supplied in other forms, for example by imposing soft nonnegativity constraints
on f , which amounts to minimizing

F (f) =
1

2
∥aM −Bf∥2 + 1

2

∑
i

(
f0i Ifi<0

)2
. (2.70)

As discussed below (2.63), such a function is relatively easy to minimize.

2.5 Optimum sensor placement

The problem of accuracy is crucial for any strategy of load identification. It
is related to the conditioning and determinacy of the discretized measurement
operator B. And they depends directly on the number and placement of the
available sensors with respect to the points, in which the unknown excitations
can occur. There is a relatively large bulk of research devoted to the problem
of optimum sensor placement with respect to the objectives of optimum struc-
tural control, optimum characterization of structural dynamic response, and to
a lesser extent of structural health monitoring, see, e.g., [120, 121, 123, 141–143],
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[122, Chapter 7] or [144] for a related problem in identification of solidification
parameters. Astonishingly, the objective of optimum identification of excitation
loads seems to be relatively neglected. Even if it seems to be closely related to
the previously mentioned objectives, it is intrinsically different and should not
be automatically assumed to be equivalent.

In fact, the author is aware of only two other researches in the topic: Said
and Staszewski use in [125] a genetic algorithm and the mutual information
approach to find the optimum placement of sensors on a composite plate for
the more basic purpose of detecting only the amplitude of a pointwise impact.
In [124], Jacquelin et al. consider a continuous structure and the identification
problem of a full time-history of an excitation load in a single sensor–single
force (SISO) setting; a relation is observed between conditioning of the identi-
fication problem and certain characteristics of the frequency response function
(alternate succession of resonances and antiresonances). This is an interesting,
but still phenomenological and qualitative relation, which can be potentially
used also in multi-sensor and multi-load (MIMO) cases in order to designate a
limited-size discrete set of candidate sensor locations to choose from based on
more quantitative optimality criteria. This section describes three such general
estimates of the accuracy of identification; they have been originally proposed
in [32].

Due to masking by measurement noise and possible underdetermination of
(2.31), a part of the information about the actual excitation is completely lost
in the measurement process and not retained in the measurements. The corre-
sponding component of the excitation belongs to QFϵ

2, where Fϵ
2 is the null space

of the regularized measurement operator Bϵ, and it is thus unreconstructible:
there is no way to identify it directly from the measurement, even if it can be
computed (or, actually, rather assumed) using certain a priori criteria that ex-
press the anticipated characteristics of the excitation, see Section 2.4. Therefore,
any accurate a posteriori accuracy measure is impossible. However, accuracy is
associated with the reconstructible excitation subspace QFϵ

1 that depends di-
rectly on the number and placement of sensors. Accuracy can be thus a priori
maximized by a proper distribution of the available sensors. The optimum dis-
tribution should ensure that QFϵ

1 is possibly large and informative with respect
to certain criteria. In [32], the author proposes two such criteria, which are
based either on the dimensionality of the reconstructible subspace for the noise-
less case (via the correlated feature of conditioning of the matrix B) or on its
informative content, which is quantified in terms of the coincidence with a given
set of expected or typical excitations. These criteria are found in numerical ex-
amples to be negatively correlated, hence they are combined in a compound
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criterion, which can be seen as a single general a priori measure of the accuracy
of identification.

In the following, sensor placement is denoted by π, which is a nonempty
subset of {1, 2, . . . , Nrmax}, where Nrmax is the number of all possible locations
of a single sensor throughout the structure. The system matrix corresponding
to sensor placement π is denoted by Bπ.

2.5.1 Criterion of conditioning

The conditioning criterion assigns to each sensor location π the following
measure q1(π) of ill-conditioning of the corresponding system matrix Bπ:

q1(π) := log
σmax(Bπ)

σmedian(Bπ)
, (2.71)

where σmax(Bπ) and σmedian(Bπ) denote respectively the maximum and the
median singular values of Bπ.

Notice that the standard measure of conditioning of a matrix (its condition
number) involves the minimum singular value instead of the median singular
value. The median is used here, as in a floating-point arithmetic it is more reli-
able: computed minimum singular values of a significantly ill-conditioned matrix
usually lie at a predefined cut-off level that is more related to the accuracy of
the arithmetic used than to the matrix itself.

2.5.2 Criterion of informativity

In underdetermined systems, conditioning alone is not a sufficient measure of
identification accuracy. The identification process can be very well-conditioned,
but it is of no practical use, if identified excitations differ much from the actual
excitations. Accuracy depends thus also on the informativity of the subspace of
reconstructible excitations and, for each excitation, it can be quantified in terms
of the distance between the excitation and its reconstructible component. The
actual excitation is unknown, hence a general measure of informativity has to
be defined with respect to a given set of Nl expected or typical unit excitations
{f1, f2, . . . , fNl}:

q2(π) :=
1

Nl

Nl∑
i=1

∥∥∥f0i − f0i |QF0
π,1

∥∥∥2 , (2.72)

where QF0
π,1 is the subspace of reconstructible excitations for a given sensor

placement π and at the noise level ϵ = 0, and f0i |QF0
π,1

denotes the projection of
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the vector f0i onto this subspace. The projection can be relatively easy found,
as due to (2.53), the reconstructible subspace is spanned by the column vectors
of the matrix QV0

π,1. Usefulness of q2 depends in practice on the set of unit
excitations {f1, f2, . . . , fNl}, which should retain characteristic features of the
excitations that are expected in the considered system.

Both criteria, q1 and q2, are computed for the noiseless case (at ϵ = 0),
which allows them to be general measures of the quality of sensor placement,
irrespective of the actual noise level in the measurement system.

2.5.3 Compound criterion

The criteria of conditioning and informativity tend in practice to be nega-
tively correlated, see a numerical example in Fig. 2.5(left). Moreover, most of
the reconstructible subspace computed for the noiseless case, QF0

1, is actually
hardly reconstructible, because it corresponds to negligibly small singular values.
Therefore, a practical criterion has to weight conditioning against informativity
and to take into account the relative measurement noise level ϵ. This can be
achieved by measuring the accuracy of the identification process as performed
with the regularized system matrix Bϵ

π instead of the original matrix Bπ:

qϵ2(π) :=
1

Nl

Nl∑
i=1

∥∥∥f ϵi − f0i |QFϵ
π,1

∥∥∥2 . (2.73)

2.6 Numerical example

2.6.1 The structure

Figure 2.2 shows the 3D truss structure modeled in the numerical example.
The structure is 6 m long, and all its elements are 0.5 m long with the exception
of the 12 diagonal elements of the lower plane, which are 0.5

√
2 m long; each

element is 10 mm2 in its cross-section and made of steel with the density of
7800 kg/m3 and Young’s modulus of 200 GPa. Additionally, the mass of each
node is 0.23 kg. There are a total of 107 elements and 38 nodes. The two left-
hand side bottom corner nodes have restrained all the degrees of freedom (DOFs)
and are thus turned into fixed support, while the two opposite right-hand side
bottom corner nodes have restrained only the vertical DOFs and are free to
move in the horizontal plane.

The modeled time interval T = 75 ms is discretized into 250 time steps of
∆t = 0.3 ms each. Such a time step corresponds to the sampling frequency of
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3333 Hz, which is more than twice as large as the highest natural frequency of
the structure (1368 Hz). Unknown excitation loads can occur only vertically in
each of the twelve upper nodes of the structure. A maximum of eleven strain
sensors can be placed in any of the eleven upper elements (0 < Nr ≤ Nrmax = 11)
that join the twelve nodes potentially exposed to the unknown excitation loads.
Discrete structural impulse responses are numerically simulated by means of the
unconditionally stable Newmark integration scheme [145–148] with the standard
parameters γ = 1/2 and β = 1/4, which is applied to (2.4) with a consistent mass
matrix. The impulse response matrix Bπ is 250Nr ×3000 in dimensions and thus
underdetermined. Figure 2.3 illustrates the structure of the full matrix B: its
row blocks correspond to the eleven sensors, while the column blocks correspond
to the twelve DOFs potentially exposed to unknown excitations. Since there are
250 time steps, each block is a 250× 250 lower triangular Toeplitz matrix. For
each sensor placement π, the corresponding matrix Bπ is obtained by selecting
the appropriate block rows from the full matrix depicted in Fig. 2.3. Such a
matrix, even if dense, is of moderate dimensions and so computation of its SVD is
feasible. Thus the more accurate approach of decomposition of the excitation and
separate identifications of its reconstructible and unreconstructible components
is followed.

Figure 2.2. The 3D truss structure modeled in the numerical example.

2.6.2 Optimum placement of sensors

Up to Nrmax = 11 strain sensors are used in the identification process. There-
fore, there are as many as 211−1 = 2047 different ways to place the sensors and
2047 different impulse response matrices Bπ. For each of them, the SVD and the
sensor placement criteria q1 and q2 defined in (2.71) and (2.72) are computed.

The criterion q2 requires the set of Nl expected or typical unit excitations
{f1, f2, . . . , fNl} to be specified. For this purpose, load shape functions [56, 60]
are used, which are cubic Hermite polynomials that are piecewise combined in
two neighboring time intervals to obtain the two C1-smooth functions depicted
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Figure 2.3. The 11× 12 block Toeplitz structure of the full impulse response matrix B.

in Fig. 2.4. The time-history of the excitation in each of the twelve potentially
load-exposed DOFs is divided into eleven equal intervals. The division points (at
the time steps no. 25, 50, 75, . . . , 225) are used to obtain 22 load shape functions
for each DOF by shifting the simple patterns plotted in Fig. 2.4. These 22 time
evolutions are normalized and independently replicated for each of the twelve
considered DOFs to yield a total ofNl = 264 excitations fi. Notice that such a set
spans a subspace of all excitations that preserves the resolution with respect to
space, but is of reduced resolution with respect to time.

Figure 2.5(left) plots q2 versus q1; each dot corresponds to one sensor place-
ment π. The negative correlation is clearly visible. Clear groups that correspond
to the number of sensors Nr can be distinguished: the more sensors, the larger
(worse) the conditioning q1 and the smaller (better) the informativity q2. Within
the individual groups a negative correlation can also be observed, even if signif-
icantly less pronounced.
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Figure 2.4. The two basic excitation patterns that are shifted in time to form all the load
shape functions for a given DOF.
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Figure 2.5. (left) Correlation plot for sensor placement criteria q1 and q2; (right) Normalized
singular values of the impulse response matrices B corresponding to the q5%2 -best and q5%2 -
worst placements of two (continuous) and three (dashed) sensors.

The measurement noise at 5% rms level is assumed, and such a level is
used to compute the compound criterion q5%2 , (2.73). Table 2.2 lists the best
and worst placements of two to five sensors according to q5%2 . The best place-
ments seem to distribute the sensors more or less evenly along the length of
the structure, while the worst placements group the sensors together near the
supports. A qualitatively similar distributions have been obtained in [32], even
if a different set of excitations was used there to compute q2. In an example of
a cantilever beam reported in [35], the worst placements were grouped near the
free end of the beam, while the best placements were more evenly distributed,
but still nearer the fixed end.
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For each given number of available sensors, the difference between the best
and the worst placements in terms of conditioning and dimensionality of the 5%-
reconstructible space can be clearly illustrated by plotting the normalized sin-
gular values of the corresponding impulse response matrices, see Fig. 2.5(right)
for the results obtained in the cases of the q5%2 -best and q5%2 -worst placements of
two or three sensors. The related 5%-reconstructible spaces have the dimensions
of 189 and 145 in the case of two sensors and 219 and 144 in the case of three
sensors. In other words, even in the best placement of two sensors only the first
189 singular vectors out of 3000 stay above the assumed 5% noise level, which
means that almost 94% of the available information is lost in the measurement
process or masked by the measurement noise. The remaining 6% is confined
to the 5%-reconstructible subspace of all excitations; the basis of this subspace
consists of the right singular vectors, that is of the columns of the matrix V5%

2 .
As an example, the excitations corresponding to the 1st and the 5th right singu-
lar vectors in the case of the q5%2 -best placement of two sensors are depicted in
Fig. 2.6. Notice the increasing oscillations: in general, the consecutive singular
vectors introduce more and more high frequency components. This is typical
for Toeplitz matrices [109] and also consistent with the characteristics of the
excitation set used to compute q5%2 .

Table 2.2. Best and worst placements of two, three, four and five strain sensors with respect
to the compound criterion q5%2 . An “o” denotes an element with a sensor; a dash “-” denotes
an element without a sensor.

2 sensors 3 sensors 4 sensors 5 sensors
o- - - - - - - -o- o- -o- - - - -o- o- -o- - - - -oo o- -o- - -o-oo
o- - - - - - -o- - o- -o- - - - - -o oo-o- - - - - -o o- - -o- -o-oo

q5%2 -best -o- - - - - - -o- -o-o- - - - - -o o- -o- -o- -o- oo-o- -o- - -o
o- -o- - - - - - - o- - - - - -o- -o o- - -o- - - -oo oo-o- -o- -o-
o- - - - - -o- - - -o- - - - -o- -o oo-o- - - - -o- o- -o- -o- -oo
- - - - - - - - -oo ooo- - - - - - - - - -oo- -oo- - - - - - - -oo-ooo
oo- - - - - - - - - - - - - - - - -ooo -ooo- -o- - - - - - - - -ooo-oo

q5%2 -worst -oo- - - - - - - - - -oo- -o- - - - - - - - - -o-ooo - - - -ooo-oo-
- - - - - - - -oo- - - -o- -oo- - - - - - - -oo- -oo - - - -ooooo- -
- -oo- - - - - - - - - - - - - -ooo- - - - - -oo-oo- - - - - -ooooo-
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Figure 2.6. Unnormalized excitations corresponding to the first and the fifth right singular
vector computed for the q5%2 -best placement of two sensors.

2.6.3 Actual excitation

Figure 2.7 depicts the evolution of the assumed actual excitation, which is
identified in the following with the discussed approaches. The excitation models
a constant moving load of 1000 N. This load is distributed in the form of a set of
two vertical forces, each of 500 N and 0.5 m apart from each other, which move
from right to left along the whole length of the modeled structure. In each time
instance, each of these two forces is transferred to the nearest structural nodes
proportionally to its position along the element. The unconditionally stable
Newmark integration scheme with γ = 1/2 and β = 1/4 is used to simulate
the exact responses of the eleven considered strain sensors, see Fig. 2.8, where
the solid lines mark the responses of the three q5%2 -best placed sensors (no.
1, 4 and 10). In order to simulate the measurement error, all the responses
are contaminated with a numerically generated independent Gaussian noise at
5% rms level before being used in computations. Spectral analysis of the noisy
response shows that as much as 99% of its energy is conveyed below 53 Hz,
which confirms that the selected time discretization is fine enough.

2.6.4 Identification results

Based on the simulated noisy responses of the considered sensors, the cor-
responding reconstructible and unreconstructible components of the excitation



62 2. Load identification in linear structures

Figure 2.7. Assumed actual excitation of the truss structure: 3D plot and a density plot.
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Figure 2.8. Simulated exact responses of the eleven strain sensors to the assumed actual
excitation. The responses of the q5%2 -best placement of three sensors (no. 1, 4, 10) are marked
with solid lines.

are separately identified. Given the SVDs of the impulse response matrices
(2.51), the reconstructible component is computed directly by (2.58). The unre-
constructible component is identified based on the assumption of nonnegativity
of the excitation, that is by minimization of (2.63).

First, the q5%2 -best placements of two and three sensors are used. The results
are shown in the form of density and 3D plots in Figs. 2.9 and 2.10, respec-
tively. In both figures, the left and right columns correspond to the number of
sensors used in identification (respectively two and three). The top rows show the
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Figure 2.9. Identification results, density plots: (left column) using the q5%2 -best placement of
two sensors, (right column) using the q5%2 -best placement of three sensors; (top row) recon-
structible components, (bottom row) results of full identification, where the assumption of
nonnegativity (2.63) is used to identify the unreconstructible excitation components.

reconstructible components, and the bottom rows show the identified full ex-
citations (2.61) which include also the unreconstructible components. All of
qualitative features of the actual excitation are identified properly, including its
location and characteristic movement. In quantitative terms, the magnitude is
identified only approximately. This is, however, not surprising, given that as
much as 93% of the total information about the actual excitation is not re-
tained in the available measurements: it is either masked by the measurement
noise or completely lost due to the insufficient number of sensors. A comparison
of the results shown in the top and bottom rows of Figs. 2.10 and 2.9 confirms
that a proper choice of the additional information used for identification of the
unreconstructible component might be crucial.

For comparison purposes, the identification is repeated using the q5%2 -worst
placement of five sensors. The results are shown in Fig. 2.11. In comparison to
the results obtained with the optimally placed two or three sensors, the accuracy
is significantly worse even though considerably more sensors are used. It clearly
emphasizes the importance of the optimum distribution of the available sensors
in the structure and confirms the usefulness of the proposed optimality criterion.
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Figure 2.10. Identification results, 3D plots: (left column) using the q5%2 -best placement of two
sensors, (right column) using the q5%2 -best placement of three sensors; (top row) reconstructible
components, (bottom tow) results of full identification, where the assumption of nonnegativity
(2.63) is used to identify the unreconstructible excitation components.

In this example, the criterion of nonnegativity is used to identify the excita-
tion in the unreconstructible subspace. A similar example is considered in [32],
but with the criterion of smoothness of excitation. Figs. 7.5 and 7.4 in Section 7.4
plot the results of identification of the same excitation, but in a structure that
features elastoplastic material characteristics (bilinear isotropic hardening).



2.6 Numerical example 65
D

O
Fs

time steps time steps

Figure 2.11. Identification results for the q5%2 -worst placement of five sensors, 3D and density
plots: (left column) reconstructible components, (right column) results of full identification,
where the assumption of nonnegativity (2.63) is used to identify the unreconstructible excita-
tion components.
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Virtual distortion method

The virtual distortion method (VDM) [27] is a quick reanalysis method that has
been developed in the Institute of Fundamental Technological Research (IPPT
PAN) since the mid 1980s. The term distortion originates from a book on the
theory of elasticity by professor Nowacki [149], where distortions are used to
model material dislocations and thermoelastic interactions. Earlier related work
includes the Eshelby’s analysis of elastic inclusions [150] and the research on
initial strains or eigenstrains by Kröner [151, 152], Argyris [153] and Maier [154];
there is also a parallel research on the theorems of structural variation by Majid
and Celik [155], which was performed mainly in the context of the phenomenon
of plasticity. In 1989, Holnicki-Szulc and Gierliński [156] have coined the term
virtual distortion and proposed the concept of the influence matrix, which is the
distinguishing factor of the VDM that provides for its numerical effectiveness.

Initially, the VDM was inspired by a research in static analysis of prestressed
structures [157]. Thereupon, analysis of progressive collapse and various prob-
lems of structural design, redesign and control were included [28, 156, 158–161],
and the methodology was successively expanded to include reanalysis in time-
domain, applications to inverse problems of structural health monitoring and to
the design of adaptive structures, see, e.g., [27, 32, 162, 163]. In its current for-
mulation, the VDM is applicable in deterministic static and dynamic reanalysis
of structures, including time and frequency domains. It has been also used for
modeling of stochastic response of truss structures with uncertain parameters
under static [164] and dynamic loads [165].

As it is convenient in the intended applications to structural health mon-
itoring, this chapter is focused on deterministic time-domain formulation of
the VDM in direct and inverse problems of dynamics. In comparison to earlier
formulations, a new continuous-time notation is used, which is not only more
concise than the original discrete-time notation, but it also emphasizes the math-
ematical structure and properties of the problem and its relation to the inverse
problem of load identification. The derivation here sets out from the equation
of motion of the original structure, which seems to be more natural than the
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postulate of equality of local strains and element forces. Moreover, in the inverse
problem of damage identification, a distinction is introduced (Subsection 3.1.2.2)
between a damage of a known type and a damage of an unknown type; the for-
mer requires only selected damage parameters to be identified (such as stiffness
reduction ratio), while in the latter case the type of the damage (such as a
“breathing crack” or a “constant reduction of stiffness”) needs to be additionally
identified, which is discussed in detail and further developed in Section 6.2.

3.1 Introduction

3.1.1 Structural reanalysis

The VDM is a reanalysis technique, that is a technique for a repeated anal-
ysis. In general, the purpose of any reanalysis technique is to compute the
structural response of a modified (damaged, plastically yielded, additionally
supported, etc.) structure in a numerically efficient way without a brute force
solution of the full set of modified structural equations, based on the informa-
tion already contained in the original response of the unmodified structure. To
this end, three components are necessary:

1. the original response of the unmodified structure,

2. definition of the modifications and

3. certain model of the unmodified structure.

The probably most widely known reanalysis method is the approximate re-
analysis by the method of combined approximations (CA), which has been de-
veloped by Kirsch et al. [166] and is basically equivalent to a preconditioned
conjugate gradient method [167]. The CA requires the full parametric model of
the unmodified structure to be known, which might be a limiting factor in purely
experimental investigations of complex real structures. Within the VDM, a non-
parametric model of the unmodified structure is used. Such a model is called
the influence matrix, and it contains global responses of the unmodified linear
structure to local strain distortions or pseudo loads. The influence matrix is thus
a nonparametric structural model, which is reduced with respect to structural
elements and/or DOFs affected by the modeled modifications, and which can
be obtained either numerically or experimentally (see Chapter 4). Given such
a model, computation of the response of the modified structure can be per-
formed in a single step, without iterations that are necessary in most of other
approaches.
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As demonstrated in [168], the VDM, the CA and the theorems of structural
variations can be in their static formulations tracked back to the Sherman–
Morrison–Woodbury formula [169]. For a general review of other static reanal-
ysis approaches, see [170–172] and also [27, Section 2].

3.1.2 Overview of the VDM

For the purpose of notational clarity, this chapter considers modifications
that affect structural stiffness and structural mass. This is not restricting, since
the formulation of the VDM is flexible and can be straightforwardly adapted
to include plastic yielding (Chapter 7 or [27, 32]), breathing cracks (Section 6.2
or [57]), moving masses (Section 6.3 or [39, 40, 55]), material damping [173, 174],
additional supports (Chapter 5 or [46, 47]), etc. Within the framework consid-
ered in this chapter, some types of modifications affect only stiffness (modifi-
cations of Young’s modulus, plastic yielding, etc.), some affect only mass (con-
centrated mass modifications), while others can affect both parameters (mate-
rial redistribution, changes in element cross-sections, etc.). The VDM models
stiffness-related effects of modifications with the vector κ0 of virtual distortions,
which are intentionally introduced additional strains that are imposed on the
involved intact finite elements. The inertial effects of mass modifications are
modeled using the equivalent unequilibrated pseudo loads p0 that act in the in-
volved structural degrees of freedom (DOFs). Even if the virtual distortions can
be expressed in terms of the equivalent pseudo loads (as in Chapter 4), in some
applications it is convenient to maintain the distinction and treat the virtual
distortions and pseudo loads separately, which is discussed in Subsection 3.3.2.

The original undamaged structure is assumed to be linear1. With the as-
sumption of zero initial conditions, the response a of the modified structure to
an external excitation can be thus represented by a sum of the

1. response aL of the original undamaged structure to the same external
excitation and the

2. response of the original undamaged structure to the imposed virtual dis-
tortions κ0 and pseudo loads p0,

that is by the following formula:

a = aL +Baνν0, (3.1)

1If necessary, potential material nonlinearities can be modeled using additional fields of
virtual (or plastic) distortions, as in Chapter 7; see also [175] for a coupled analysis.
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where the vector ν0 collects the pseudo loads and virtual distortions,

ν0 =

[
p0

κ0

]
, (3.2)

and their effect on the response is modeled by the linear matrix operator Baν

of convolution with the respective impulse response functions of the original
undamaged structure. These impulse response functions can be either precom-
puted or even directly measured, if the parametric numerical model of the orig-
inal structure is unknown [29]. The vector ν0 depends on the type and extent
of the damage and is related in an implicit way to the vector µ of damage
parameters by the following equation:

0 = R
(
ν0,µ,a

)
, (3.3)

which is stated here in a general form, as the specific form of the function R
depends on the type of the considered damages, modifications or nonlinearities;
for example, in the case of the damages considered in this chapter it takes the
form of (3.28) or (3.30).

3.1.2.1 Direct problem

The direct problem is the problem of computing the response a of the mod-
ified structure to a certain external excitation, given

1. the response aL of the original undamaged structure to the same excita-
tion,

2. the damage, defined by the damage type (function R) and damage pa-
rameters µ, and

3. certain characteristics of the original structure (expressed in the form
of the operator Baν and based on the impulse responses of the original
undamaged structure).

The solution scheme is simple: first, (3.1) is substituted into (3.3) and the re-
sulting equation

0 = R
(
ν0,µ,aL +Baνν0

)
, (3.4)

is solved with respect to the vector ν0. In time domain, this is usually equivalent
to a linear integral equation of the Volterra type, and in the case of a localized
damage, the number of unknowns (elements of ν0) is considerably smaller than
the number of structural DOFs. Then, the computed vector ν0 is substituted
back into (3.1) to obtain the response a. In this way, the response of the damaged
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structure is expressed in terms of (convolutions of) selected structural impulse
responses of the original unmodified structure, so that time-consuming brute
force simulation of the updated finite element (FE) model is avoided. In other
words, the VDM uses a reduced (fewer unknowns) and essentially nonparamet-
ric (that is based on the impulse responses) approach to structural modeling,
which is an outstanding feature of the VDM in comparison to other reanalysis
approaches, such as the CA [166, 167], that usually operate directly on the full
structural FE model. Notice that the VDM, similarly as the CA and most other
reanalysis methods, relies on the assumption of small deformations (geometric
linearity).

3.1.2.2 Inverse problem

Within the framework of the VDM, the inverse problem of damage identifi-
cation is the problem of identifying the damage, given

1. the measured response aM of the damaged structure to a certain external
testing excitation,

2. the response aL of the original undamaged structure to the same testing
excitation, and

3. certain characteristics of the original structure (expressed in the form
of the operator Baν and based on the impulse responses of the original
undamaged structure).

Additionally, the type of the damage can be either known or unknown, so that
the function R in (3.3) is respectively either known or unknown, too. In both
cases, the identification is stated in the form of the problem of finding a certain
least-squares solution to the following equation:

aM = aL +Baνν0

= a,
(3.5)

which equates the measured and the modeled responses of the damaged struc-
ture. The least-squares solution is found with respect to either µ or ν0, which
is then used to identify the damage type R.

Damage of a known type. If the function R is known, only the vector µ
of damage parameters needs to be identified. This is usually performed in the
standard way, that is by minimizing the norm of the residuum of (3.5),

F (µ) :=
1

2
∥aM − a∥, (3.6)
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with respect to the vector µ. The response a of the damaged structure depends
on µ and is computed as in the direct problem. Such a formulation is described
in detail in this chapter. Its important feature is that it allows an effective exact
first and second order sensitivity analysis to be performed with respect to µ.
As a result, fast gradient-based and even second order optimization approaches
can be used to minimize the objective function. Besides, the formulation in the
form of a least-squares problem allows also the Hessian of the objective function
to be quickly approximated along the lines of the Gauss–Newton approach at
the computational cost of a first order analysis.

Damage of an unknown type. If the type of the damage is not known,
both R and µ have to be identified. First, (3.5) is solved with respect to the
vector ν0, which is equivalent to finding a solution to a linear least-squares
problem. This yields the pseudo loads and/or virtual distortions that explain
the observed discrepancies between the measured response aL of the damaged
structure and the response a of the original undamaged structure. Then, several
versions of (3.3) are constructed that correspond to various potential damage
types Ri, i = 1, 2, . . . In each case, the particular damage parameters are found
by minimizing the norm of the residuum ∥Ri(ν

0,µ,aL)∥ (or of its physically
more meaningful equivalent) with respect to µ. The best-fitting damage type
(that is Ri with the smallest residuum norm) together with its fitted parameters
are assumed to represent the actual damage. Such an approach is considered in
Section 6.2 and further developed into a tool for simultaneous identification of
excitations and damages.

3.1.3 Introductory examples

This subsection uses two simple examples to illustrate the scheme of ap-
plication of the VDM in direct problems of structural reanalysis, discuss the
difference to a direct solution in terms of the required data and numerical effec-
tiveness, as well as to introduce two specific forms of (3.3).

3.1.3.1 Mass modification in a 1-DOF system

Consider a 1-DOF system that satisfies the standard form of the equation
of motion:

müL(t) + cu̇L(t) + kuL(t) = ftest(t). (3.7)

Denote its acceleration impulse response function by B̈up(t), and let B̈up denote
the respective operator, defined as in (2.20). Assume zero initial conditions and
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let uL(t) and B̈up be known. Consider a mass modification ∆m; the equation of
motion of the modified system under the same testing excitation ftest(t) can be
then stated as

(m+∆m)ü(t) + cu̇(t) + ku(t) = ftest(t), (3.8)

where u(t) denotes the response of the modified structure that is different from
the original response uL(t). The modification term can be moved to the right-
hand side of the equation, which effectively transforms the modification into a
pseudo load p0(t) that acts in the original system and models the inertial effects
of the modification:

mü(t) + cu̇(t) + ku(t) = ftest(t) + p0(t), (3.9a)

where
p0(t) = −∆mü(t). (3.9b)

Equation (3.9a) is the equation of motion of the original system, which is excited
by the same external excitation ftest(t) as in (3.7) and additionally by the pseudo
load p0(t). As a result, the acceleration response of the modified system is the
sum of the responses of the original system to ftest(t) and to p0(t). In the
operator notation, as in (2.20), the response can be expressed in the following
form:

ü(t) = üL(t) + (B̈upp0)(t). (3.10)

Notice that (3.9b) is a counterpart of (3.3), while (3.10) corresponds to (3.1).
To solve the direct problem using the VDM approach, (3.10) is first substi-

tuted into (3.9b). It yields the following integral equation of the Volterra type:((
I +∆mB̈up

)
p0
)
(t) = −∆müL(t), (3.11)

which is solved with respect to the pseudo load p0(t). The result is then substi-
tuted into (3.10) to obtain the response of the modified system. Such a VDM-
based scheme can be compared with a direct solution of the modified equation
of motion (3.8). Two important points should be noted:
• Required data. In any direct solution of (3.8), the excitation ftest(t) and

the parametric model of the system defined by m, c and k have to be
known. On the other hand, the VDM requires B̈up and uL(t) to be known,
that is a nonparametric model of the system and its response to the con-
sidered excitation, which are both easy to obtain directly from experi-
mental measurements.
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• Numerical effectiveness. In this example, the VDM has no computational
advantage over a direct solution: both (3.8) and (3.11) have a single un-
known, while the Volterra integral equation (3.11) might be computation-
ally more costly than a simple ordinary differential equation (3.8). The
reason is that the system considered here has a single DOF only, so that
its modification is not localized; compare it with the next example.

3.1.3.2 Stiffness modification of a truss element

Consider a single truss element of an arbitrarily large linear structure and
denote by εL(t) its response to an external excitation of the global structure.
Consider a modification of the stiffness of the element and let it be quantified
by the stiffness reduction ratio

µ :=
Ẽ

E
, (3.12)

where Ẽ and E are the modified and original Young’s moduli. Assume zero initial
conditions. The VDM models stiffness modification of a truss element with a
time-dependent virtual distortion ε0(t) (an additional strain) imposed on the
original unmodified element. Let Bεε(t) denote the strain response of the original
element to an impulsive virtual distortion, that is to an excitation by a pair of
self-equilibrated axial forces ±EAδ(t) applied at its ends, where A denotes the
cross-sectional area and δ(t) is Dirac’s delta. Assume that the original response
εL(t) and the response Bεε(t) (or the corresponding convolution operator Bεε)
are both known.

The direct problem is the problem of computing the response ε(t) of the
modified element to the same external excitation. The axial force in the actually
modified element should be the same as in the element with the modification
modeled by the virtual distortion, that is

ẼAε(t) = EA
(
ε(t)− ε0(t)

)
, (3.13)

which yields the following counterpart of (3.3):

ε0(t) = (1− µ)ε(t). (3.14)

The original structure is linear, thus the response of the modified element is the
sum of its original response εL(t) and its response to the virtual distortion,

ε(t) = εL(t) +
(
Bεεε0

)
(t), (3.15)
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which is the counterpart of (3.1). Substitution of (3.15) into (3.14) yields the
following integral equation of the Volterra type:

ε0(t)− (1− µ)
(
Bεεε0

)
(t) = (1− µ)εL, (3.16)

which is solved to obtain ε0(t). The response ε(t) of the modified element is
obtained then by a substitution into (3.15). As in the previous example, two
points should be noted:
• Required data. In any attempt at direct solution, the external excitation

and the full parametric structural model of the global structure should
be known, which can be difficult to obtain and update, and whose size
depends on the number of structural DOFs and can be thus very large.
On the other hand, irrespective of the size of the global structure, the
VDM requires only two scalar functions Bεε(t) and εL(t) to be known,
which are both relatively easy to obtain directly from measurements.

• Numerical effectiveness. In this example, the computational advantage of
the VDM over the direct solution is very clear: the VDM requires only a
single integral equation (3.16) with a single unknown to be solved, while
any direct solution would require a solution of the full equation of motion
of the global structure, which might be a time-consuming process in a
case of a large structure. This advantage can be traced back to the fact
that the modification considered here is localized and that the VDM uses
a nonparametric structural model which is reduced in size to the number
of the virtual distortions (or pseudo loads).

3.1.4 VDM and load identification

Throughout the rest of this book, the VDM is extensively used, mostly
in time domain, as a convenient vehicle for formalization of various modeling
and/or identification problems related to SHM. Similar as the inverse problem
of load identification (Chapter 2), the VDM is formulated in terms of Volterra
integral equations and relies on deconvolution procedures, which can be seen
in the formal similarity of (2.26) to (3.5) (or to its three specific forms: (3.11),
(3.16) and (3.32). This is not a coincidence, since load identification is at the
core of the methodology and occurs in the direct problem as well as in the
inverse problem:
• In the direct problem the damages are assumed, and in order to compute

the corresponding response, the methodology computes the equivalent
pseudo loads or virtual distortions by solving (3.4) or any of its specific
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version such as (3.32). The latter equation has a formally identical form as
(2.26), and essentially it is thus an inverse problem of load identification.
Load identification occurs also in the inverse problem of identification of
a damage of a known type (see Subsection 3.1.2.2), because it proceeds
by a repetitive solution of the direct problem.

• Identification of a damage of an unknown type starts with identification of
the pseudo loads or virtual distortions that explain the observed discrep-
ancies between the responses of the original structure and the damaged
structures. It requires computing a solution to (3.1), which is a prime
example of a load identification problem.

Moreover, the VDM can be seamlessly merged with the load identification pro-
cedures outlined in the previous chapter to form a unified approach for simul-
taneous identification of excitations and damages, see Chapter 6 and especially
Section 6.2.

3.2 Distortions of a finite element

3.2.1 Basis distortions and equivalent element loads

The effects of stiffness modification of a finite element are modeled within
the VDM using the equivalent virtual distortions. Their number and forms can
be analyzed using the eigenvalue problem of the local stiffness matrix Ki of
the involved finite element, which is expressed in local coordinate system (the
subscript i stands for the ith element). The matrix is positive semi-definite,
hence its eigenvectors are of two kinds only: unit distortion vectors φij that
correspond to positive eigenvalues λij and unit rigid motion vectors that corre-
spond to zero eigenvalues. Thus, the matrix Ki can be expressed in terms of its
positive eigenvalues and the corresponding eigenvectors as follows:

Ki =
∑
j

λijφijφ
T
ij . (3.17)

The eigenvector φij is called the jth basis distortion vector of the ith finite
element and corresponds to the following vector of local loads of the element:

nij := Kiφij = λijφij . (3.18)

Example 3.1 (distortions of a 2D beam element). In its local coordinate system
{x1, y1, θ1, x2, y2, θ2}, a 2D Euler–Bernoulli beam element of length L has the
following stiffness matrix:
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Ki =



EA
L 0 0 −EA

L 0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 −6EI

L2
2EI
L

−EA
L 0 0 EA

L 0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 −6EI

L2

0 6EI
L2

2EI
L 0 −6EI

L2
4EI
L


,

where E is the Young modulus, A is the beam’s cross-section and I is the sec-
ond moment of area of the cross-section. Such a matrix has the three following
positive eigenvalues:

λi1 =
2AE

L
, λi2 =

2EI

L
, λi3 =

6EI(4 + L2)

L3
.

The three corresponding eigenvectors,

φi1 = {−1, 0, 0, 1, 0, 0} , (axial distortion)
φi2 = {0, 0,−1, 0, 0, 1} , (bending distortion)
φi3 = {0, 2/L, 1, 0,−2/L, 1} , (shear/bending distortion)

constitute the three basis distortion vectors of the element; their forms are il-
lustrated in Fig. 3.1. Notice that bar elements, whether 2D or 3D, have only a
single axial distortion.

Figure 3.1. The three basis distortions of a 2D beam finite element: axial, bending and
shear/bending.

3.2.2 Total distortions

A vector ui(t) of local nodal displacements (expressed in local coordinates)
can be represented in the eigenbasis of Ki. The coordinates κij(t) that corre-
spond to the basis distortion vectors φij(t),

κij(t) := φT
ijui(t), (3.19)

are called the total distortions.
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3.2.3 Decomposition of global elastic forces

Let Li be the transformation matrix from the global coordinate system to
the local coordinates of the ith element, so that

ui(t) = Liu(t), (3.20)

where u(t) is the global displacement vector expressed in the global coordinate
system. The global stiffness matrix K of the original undamaged structure can
be assembled from local stiffness matrices as

K =
∑
i

LT
i KiLi. (3.21)

Using (3.17) to (3.21), the vector Ku(t) of global elastic forces can be decom-
posed into a linear combination of total distortions κij(t) and the corresponding
vectors of local nodal loads nij , that is it can be expressed in the form of the
following sum:

Ku(t) =
∑
i

LT
i Kiui(t) =

∑
i,j

κij(t)L
T
i nij . (3.22)

3.2.4 Equation of motion of the original structure

Let the vector ftest(t) denote an external excitation. Denote the correspond-
ing response of the original unmodified structure by uL(t) (global displacements)
and κL

ij(t) (total distortions). The equation of motion of the unmodified struc-
ture can be stated as, see (3.22),

MüL(t) +Cu̇L(t) +
∑
i,j

κL
ij(t)L

T
i nij = ftest(t), (3.23)

where M and C denote respectively the mass and damping matrices of the
unmodified structure. The superscript L stands for “linear” and emphasizes the
linearity of the original unmodified structure, whose response constitutes the
baseline response for further reanalysis and computations. The baseline response
is modified by the effects of the virtual distortions and/or pseudo loads that
are used to model structural modifications and damages, which can in general
introduce nonlinearity into the structure, such as a breathing crack (Section 6.2)
or plastic yielding (Chapter 7).
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3.3 Direct problem

3.3.1 Structural modifications and damages

The direct problem is the problem of computing the response a(t) of the
modified structure, given the vector µ of damage parameters. This chapter con-
siders two kinds of structural modifications and/or damages:

1. Stiffness-related damages, which are represented by constant uniform stiff-
ness reductions of the affected finite elements and quantified in relative
terms by the ratio µi between the original local stiffness matrix Ki and
the modified local stiffness matrix K̃i,

K̃i = µiKi, (3.24)

where i indexes the elements. This approach seems to be typical for global
SHM methods, see, e.g., Dems and Mróz [176, 177] or Dems and Tu-
rant [178], where from the practical point of view the most important
factor is often the remaining stiffness expressed in relative terms as a per-
centage of the original stiffness. These damages are modeled with virtual
distortions of the affected finite elements. However, if absolute stiffness
modifications ∆K are required, which may happen, e.g., in the case of
additional reinforcing elements, they need to be modeled by pseudo loads,
see Chapter 4.2.1.2.

2. Mass-related modifications, which are described here in absolute terms as
a certain unknown modification ∆M to the original structural mass ma-
trix M. This is a natural way of modeling the influence of added masses.
If a relative formulation is required, it can be obtained in an analogous
way to (3.24) as ∆M =

∑
i µiMi; notice that mass modification will

be then coupled to stiffness modification by the common modification
coefficients µi.

For notational simplicity, it is assumed here that the modifications do not con-
siderably affect the material damping properties of the involved elements. If it
is not the case, the damping can be modeled in a similar way to the modifi-
cations of stiffness and mass, see, e.g., [173, 174] and [162, Section 6.4]. Notice
also that the modifications considered here preserve the linearity of the struc-
ture. However, the approach can be straightforwardly extended to include the
case of time-varying stiffness modifications (breathing cracks, plasticity, etc.),
as discussed, e.g., in [27, 32, 40, 57] or in Chapters 6 and 7.
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3.3.2 Pseudo loads and virtual distortions

If an external excitation ftest(t), the same as in (3.23), is applied to the
modified structure, it results in the response u(t), which is described by the
following equation of motion:

(M+∆M) ü(t) +Cu̇(t) +
∑
i

LT
i K̃iui(t) = ftest(t). (3.25)

The terms that quantify the modifications are moved to the right-hand side,
which yields the following equivalent form:

Mü(t) +Cu̇(t) +
∑
i

LT
i Kiui(t)

= ftest(t)−∆Mü(t) +
∑
i

(1− µi)LT
i Kiui(t),

(3.26)

or, see (3.22),

Mü(t) +Cu̇(t) +
∑
i,j

κij(t)L
T
i nij = f(t) + p0(t) +

∑
i,j

κ0ij(t)L
T
i nij , (3.27)

where

p0(t) = −∆Mü(t), (3.28a)

κ0ij(t) = (1− µi)κij(t). (3.28b)

Actually, (3.27) is the equation of motion of the unmodified structure, which is
subjected, besides the original excitation ftest(t), to the pseudo load p0(t) and
the virtual distortions κ0ij(t) that model the considered structural modifications.
The equivalency between the modifications and the pseudo load/virtual distor-
tions is expressed in an implicit way by (3.28), which are a particular case of
the equation (3.3). In general, their specific form depends on the type of the
assumed modifications and it is different for modifications of other types; for
another example see (5.6), which is a kinematic compatibility condition that
describes the reaction forces of modeled virtual supports.

A virtual distortion κ0ij(t) of a finite element can be identified with an
additionally introduced time-dependent strain. For simulation purposes, it is
modeled with the corresponding vector κ0ij(t)nij of self-equilibrated generalized
forces applied locally in the DOFs of the involved element. Mass modifications
are modeled with the vector p0(t) of pseudo loads, which are unequilibrated
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generalized forces applied in the DOFs related to mass modifications. In prin-
ciple, it is possible to decompose virtual distortions into local nodal loads and
merge them with p0(t) in order to use a single vector of pseudo loads for the
dual purpose of modeling both types of modifications simultaneously. It can be
practically useful in purely experimental approaches, because forces are easier
to generate experimentally than distortions, and such a possibility is further
investigated in Chapter 4. However, in the general formulation it is advanta-
geous to maintain the distinction between pseudo loads and virtual distortions
because of the following practical as well as conceptual reasons:
• A finite element has a smaller number of distortions than DOFs (e.g.,

a 3D truss element needs six pseudo loads, but only a single distortion to
model a modification of its stiffness).

• There is a natural gradation of virtual distortions of an element in terms
of their importance, which is related to the order of the distortion (the
magnitude of the corresponding eigenvalue) and to the excitation. Sim-
ulation or common engineering sense can be often used to determine
which distortions of an element are dominant in its response and which
are insignificant and can be thus neglected. A quantitative measure of
importance is proposed in [58].

• The intuitiveness of the relation between the stiffness modification and the
corresponding virtual distortions is conceptually appealing. It is especially
apparent in the case of a truss element.

As confirmed by (3.27), the response u(t) of the damaged structure can
be modeled by the following sum of the responses of the original unmodified
structure to the external excitation ftest(t), the pseudo load p0(t) and the virtual
distortions κ0ij(t):

ü(t) = üL(t) +
(
B̈up

p0
)
(t) +

∑
i,j

(
B̈uκ

ij κ
0
ij

)
(t), (3.29a)

κij(t) = κL
ij(t) +

(
Bκp

ij p
0
)
(t) +

∑
k,l

(
Bκκijklκ0kl

)
(t), (3.29b)

which are a specific form of (3.1) and counterparts of (3.10), (3.15) and (2.20).
The response to the pseudo loads and virtual distortions is expressed here
through the respective matrix operators that are based on convolutions with the
corresponding impulse response functions of the unmodified structure: B̈up(t),
which is the matrix of acceleration responses in all involved DOFs to impulse
excitations in all involved DOFs; B̈uκ

ij (t), which is the vector of acceleration re-
sponses in all involved DOFs to an impulsive unit distortion φij (local impulsive
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load nij); B
κp
ij (t), which is the response vector of the jth distortion of the ith

finite element to impulse excitations in all involved DOFs; and Bκκ
ijkl(t), which is

the response of the jth distortion of the ith finite element to an impulsive unit
distortion φkl (local impulsive load nkl). If the excitation and response DOFs
are collocated, the respective acceleration impulse response functions contain
an impulsive term at time t = 0, which affects the respective matrix operator
as in (2.20c).

For notational simplicity, (3.28) and (3.29) are stated together in the follow-
ing concise forms:

ν0(t) = P(µ)a(t), (3.30)

a(t) = aL(t) +
(
Baνν0

)
(t), (3.31)

where the vector ν0(t) collects together the pseudo load vector p0(t) and all the
virtual distortions κ0ij(t) as defined in (3.2), the vector a(t) collects together the
involved responses of the modified/damaged structure, that is ü(t) and all the
distortion responses κij(t), the vector aL(t) collects all the baseline responses
üL(t) and κL

ij(t) of the original intact structure, the vector µ collects all the
damage and modification parameters (all µi together with all the mass-related
parameters that define ∆M), the matrix P(µ) is a block matrix composed of
∆M and a diagonal block with 1−µi on the diagonal, see (3.28), and the matrix
operator Baν collects all the matrix operators from (3.29) ordered in the way
that match the internal order of the elements of the vectors a(t) and ν0(t).
Notice that (3.30) and (3.31) are specific forms of (3.3) and (3.1), respectively.

3.3.3 Solution scheme

Equation (3.31) can be used to compute the response a(t) of the modified
structure, provided the vector ν0(t) of pseudo loads and virtual distortions is
known. However, (3.30) states ν0(t) in an implicit way and cannot be used for
a direct computation. Hence, as outlined in Subsection 3.1.2.1, (3.31) is substi-
tuted into (3.30) to obtain the following system of Volterra integral equations:

P(µ)aL(t) = ν0(t)−P(µ)
(
Baνν0

)
(t), (3.32)

where, apart from the unknown vector ν0(t), all the other terms are known.
For modifications small enough, (3.32) constitutes a system of Volterra integral
equations of the second kind and is thus uniquely solvable, see Theorem A.16
in Appendix or [112]. Solved (3.32), the response a(t) of the damaged structure
is obtained from (3.31) by a substitution of the vector ν0(t).
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Two important points should be noted here, which parallel the observations
made in Subsection 3.1.3:
• Required data. Equations (3.30), (3.31) and (3.32) involve, besides the

modification parameters µ, only selected local characteristics of the orig-
inal unmodified structure (responses to ftest(t) and the matrix operators
based on the reduced impulse responses). As a result, FE models of nei-
ther original nor modified structure are required to compute the response
of the modified structure.

• Numerical effectiveness. According to (3.28), the pseudo loads vanish in
all DOFs that are not directly related to the mass modifications ∆M
and, similarly, the virtual distortions are nonzero only in the damaged
finite elements. As a result, the dimension of the system (3.32) is signif-
icantly reduced, which makes numerical computations more feasible. In
other words, for localized modifications, only a small submatrix of the
full impulse response matrix is required to construct Baν .

This is in agreement with the fact repeatedly mentioned in Section 3.1: the
VDM uses a nonparametric model of the original structure which is reduced in
size to the number of the virtual distortions and pseudo loads.

3.3.4 Time discretization

In practice, all the responses are either measured or obtained via numerical
simulations and thus discrete. As a result, not the continuous-time (3.30), (3.31)
and (3.32), but rather their discretized counterparts are usually used. In the
matrix notation, they take the following forms of large linear equations:

ν0 = P(µ)a, (3.33a)

a = aL +Baνν0, (3.33b)

P(µ)aL = [I−P(µ)Baν ]ν0, (3.33c)

where I denotes the identity matrix of appropriate dimensions. The vectors a,
aL and ν0 are the discrete-time counterparts of aL(t), a(t) and ν0(t) sampled
and collected in all considered time instants. Similarly, the matrix Baν is the
discretized counterpart of the corresponding matrix operator; with proper or-
dering of the discrete data, it has the form of a block matrix with Toeplitz
blocks, similar in structure to that seen in Fig. 2.3 or in Fig. 4.2. For notational
simplicity, the same symbols are used in (3.33) and in (3.30), (3.31) and (3.32)
to denote vectors that depend on time and their discrete-time counterparts
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(e.g., a(t) vs. a). However, ambiguity can be avoided, because functions can be
always distinguished from their discretized versions by the explicitly specified
time argument t.

For an assumed modification scenario, quantified by the vector µ of mass
and stiffness modification parameters, (3.33c) is solved to obtain the equivalent
vector ν0 of pseudo loads and virtual distortions. As (3.33c) is a discretized
version of a Volterra integral equation, it is usually significantly ill-conditioned
and requires numerical regularization. The response of the modified structure is
then computed using (3.33b). To this end, the solution vector ν0 is multiplied
by the matrix Baν , which, as a discrete-time counterpart of a matrix operator
based on convolution, acts as a smoothing operator that alleviates the effects of
a potential under-regularization of (3.33c). As a result, the computed discrete
response a turns out in practice to be stable for a wide range of regularization
parameters.

3.4 Inverse problem

The inverse problem, as outlined in Subsection 3.1.2.2, is the problem of
characterizing a damage (or a modification) of a structure, given the measured
response aM(t) of the damaged/modified structure to a testing excitation ftest(t).
Selected local characteristics of the original unmodified structure, that is the
matrix operator Baν and the response aL(t) to the testing excitation, are re-
quired for this purpose. In practice, the discrete-time formulation is used, and
the identification is based on (3.33). As in the direct problem, a nonparametric
model is used, which is additionally reduced with respect to the placement of the
testing excitation, sensors and potential structural damages. No full parametric
structural model of neither the original nor the damaged structure is thus nec-
essary for identification. As a result, no time-consuming repeated modifications
and brute force simulations of the full model are required to account for the
damages. This is an important advantage of the VDM-based reanalysis, which
allows identification of localized modifications to be performed quickly.

Subsection 3.1.2.2 distinguishes between two general kinds of inverse prob-
lems: inverse problems with a known damage type and inverse problems with
an unknown damage type or, in other words, between inverse problems with
a known and an unknown function R in (3.3). This chapter considers the for-
mer case: the damage is modeled here with certain modifications of structural
stiffness and mass, see Subsection 3.3.1, so that (3.3) takes the specific form
of (3.28) or (3.30).
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3.4.1 Objective function

Assumed the type of the damage, the identification amounts to minimization
of the discrepancy F (µ) between the measured response aM(t) of the modified
structure to a certain testing excitation and the corresponding simulated re-
sponse a(t). The standard l2 norm is usually used with the residuum of (3.5)
and the objective function is then defined as in (3.6):

F (µ) :=
1

2

T∫
0

∥d(t)∥2 dt

=
1

2
∥d∥2

=
1

2
⟨d,d⟩ ,

(3.34a)

where µ is the vector of the unknown damage parameters that need to be
identified and ⟨·, ·⟩ denotes the standard scalar product of two functions defined
on the considered time interval [0, T ]. The vector d(t) is the discrepancy between
the modeled and measured responses,

d(t) := aM(t)− a(t), (3.34b)

where a(t) is the response as simulated using the VDM and aM(t) is the mea-
sured response of the modified structure to the same testing excitation. Alter-
natively, it may be sometimes beneficial to normalize the responses in order to
equate the influence of the individual sensors on the objective function,

F (µ) :=
1

2

∑
i

∥aM
i − ai∥2

∥aM
i ∥2

, (3.35)

where the subscript i indexes the sensors used for identification. As these two
formulas differ in the constant terms only, (3.34a) is used in the following. The
respective formulas corresponding to (3.35) can be obtained by a simple nor-
malization of the summands.

Depending on the particular meaning of the modification parameters µ,
they may be subjected to common sense constraints. For example, a stiffness
modification parameter µi, as defined in (3.24), usually must obey at least a
constraint of the form 0 ≤ µi ≤ 1.
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3.4.2 Sensitivity analysis

First and second order sensitivity analysis of the identification problem is
possible using either the direct differentiation method (DDM) or the adjoint
variable method (AVM) [179–182]. As a result, exact Newton optimization tech-
niques can be used for fast convergence of the optimization process [137] and
quick identification.

The DDM performs sensitivity analysis of any response-based function di-
rectly via sensitivity analysis of the structural response, that is by using pre-
computed derivatives of the response. On the other hand, the AVM uses a vector
of the adjoint variables, which are specific to the analyzed objective function (or
a constraint function). The most time-consuming operations are repetitive so-
lutions of the differentiated or adjoint versions of (3.32), that is (3.37) or (3.43)
respectively. All other operations are significantly faster. The total time of the
first order analysis is then O(Nµ) for the DDM and O(NF ) for the AVM, where
Nµ denotes the number of damage parameters and NF denotes the total number
of the analyzed functions (the objective function F (µ) and the constraints). No-
tice also that certain optimization techniques do not require sensitivity analysis
of the soft constraints (for example, a penalty function might be used instead).
In such a case, the AVM significantly outperforms the DDM. For the second
order analysis, the time complexities are O(N2

µ) for the direct–direct method
and O(Nµ+NF ) for the direct–adjoint method. In the following, both methods
are described with respect to the objective function F (µ). The same derivation
can be followed for constraints or other response-based functions.

3.4.2.1 First order sensitivity analysis

Direct differentiation of the objective function (3.34a) with respect to the
parameter µi yields the following formula:

Fi(µ) :=
∂

∂µi
F (µ)

= −⟨d,ai⟩ ,
(3.36a)

where

ai(t) :=
∂

∂µi
a(t)

=
(
Baνν0

i

)
(t)

(3.36b)

is the ith derivative of the response vector a(t) obtained by a direct differentia-
tion of (3.31). Other response-based functions, such as constraints, would yield
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formulas different from (3.36a); however, they would always involve ai(t). Equa-
tion (3.36b) expresses ai(t) through the derivative ν0

i (t) of the vector ν0(t) of
pseudo loads and virtual distortions, which is computed by the DDM using the
differentiated (3.32),

Pi(µ)a(t) = ν0
i (t)−P(µ)

(
Baνν0

i

)
(t) (3.37)

that needs to be solved anew separately for each i, that is a total of Nµ times.
Solved (3.37), the derivatives of any function F (µ) can be obtained by a simple
substitution of the computed ν0

i (t) into (3.36), which is an operation signifi-
cantly faster than solving (3.37).

In contrast to the DDM, the AVM collects all the terms in (3.37) on the
right-hand side,

0 = ν0
i (t)−P(µ)

(
Baνν0

i

)
(t)−Pi(µ)a(t), (3.38)

and takes the scalar product with a vector λ(t) of adjoint variables,

0 = ⟨λ,0⟩ =
⟨
λ,ν0

i −P(µ)Baνν0
i −Pi(µ)a

⟩
. (3.39)

The result is added to (3.36a) in which (3.36b) has been substituted for ai(t),

Fi(µ) = −
⟨
d,Baνν0

i

⟩
+
⟨
λ,ν0

i −P(µ)Baνν0
i −Pi(µ)a

⟩
. (3.40)

All the terms that contain the derivative ν0
i (t) are collected together to yield

Fi(µ) =
⟨
−(Baν)⋆d+ λ− (Baν)⋆P(µ)λ,ν0

i

⟩
− ⟨λ,Pi(µ)a⟩ , (3.41)

where the symmetry of P(µ) is used and the superscript ⋆ denotes the adjoint
operator, see (A.33),

(B · ) (t) =
t∫

0

B(t− τ) · (τ) dτ, (3.42a)

(B⋆ · ) (t) =
T∫
t

BT(τ − t) · (τ) dτ. (3.42b)

The derivative ν0
i (t) is eliminated from (3.41) by choosing the vector λ(t) of the

adjoint variables in such a way that the first scalar product vanishes as a whole.
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It happens if the left multiplier of the scalar product vanishes, that is if λ(t) is
a solution to

((Baν)⋆d) (t) = λ(t)− ((Baν)⋆P(µ)λ) (t), (3.43)

which is called the adjoint integral equation. Equation (3.43), as (3.32), is
a Volterra integral equation of the second kind, and for modification small
enough it is uniquely solvable. Finally, given the adjoint variable λ(t), the first
scalar product in (3.41) vanishes and the derivative Fi(µ) can be computed
simply and quickly as

Fi(µ) = −
⟨
λ,Pi(µ)a

⟩
. (3.44)

Notice that the adjoint variable λ(t) is independent of i, so that the full
gradient ∇F (µ) of the analyzed function can be computed at the cost of a single
solution of the adjoint integral equation (3.43), instead of multiple solutions of
(3.37) as required by the DDM. On the other hand, the left-hand side of the
adjoint equation (3.43) depends on the analyzed function and so the equation
needs to be solved separately for each of the analyzed functions (a total of NF

times). The time complexities of the DDM and AVM are thus proportional to
the number of the parameters and analyzed functions, respectively.

3.4.2.2 Second order sensitivity analysis

If required, second order sensitivity analysis can be performed using the
direct–direct method or, alternatively, the direct–adjoint method, which seems
to be the fastest from the family of the second order adjoint methods [181].
Both methods require the first order derivatives ν0

i (t) to be computed using the
DDM, that is by solving (3.37) a total of Nµ times (once for each parameter µi),
and then substituted into (3.36b) in order to obtain ai(t). Double differentiation
of the objective function with respect to the ith and jth parameters yields a
formula analogous to (3.36a),

Fij(µ) :=
∂2

∂µi∂µj
F (µ)

= ⟨aj ,ai⟩ − ⟨d,aij⟩ ,
(3.45a)

where aij(t) denotes the second derivative of the response vector a(t),

aij(t) :=
∂2

∂µi∂µj
a(t)

=
(
Baνν0

ij

)
(t).

(3.45b)
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Although other response-based functions can yield formulas that are differ-
ent from (3.45a), they will always involve aij(t), which is expressed in (3.45b)
through the second order derivative ν0

ij(t). The direct–direct method computes
ν0
ij(t) by solving the twice differentiated (3.32),

Pi(µ)aj(t) +Pj(µ)ai(t) = ν0
ij(t)−P(µ)

(
Baνν0

ij

)
(t), (3.46)

which needs to be performed separately for each pair of indices i and j, that
is a total of 1

2Nµ(Nµ + 1) times. The direct–direct method has thus the time
complexity of O(N2

µ). It is assumed in (3.46) that Pij(µ) vanishes, because it
is a linear function of µ, see (3.28) and (3.30). Solved (3.46), the second order
derivatives and the Hessian of F (µ) can be obtained by a simple substitution
of the computed ν0

ij(t) into (3.45), which is an operation much faster than
solving (3.46).

The direct–adjoint method uses the adjoint variable λ(t) to eliminate ν0
ij(t)

from (3.45a) and thus to avoid repetitive solutions of (3.46). The procedure is
analogous to the procedure outlined in (3.38) to (3.44) and yields

Fij(µ) = ⟨ai,aj⟩ − ⟨λ,Pi(µ)aj +Pj(µ)ai⟩ , (3.47)

where λ(t) is the same as used in the first order analysis, that is a solution
to (3.43). The direct–adjoint method requires a separate solution of (3.37) for
each parameter µi (a total of Nµ solutions) as well as a separate solution of
(3.43) for each of the analyzed functions (NF solutions). Therefore, it has a
linear time complexity with respect to the sum of the numbers of parameters
and analyzed functions O(Nµ+NF ), and it is thus preferable to the direct-direct
method, unless Nµ ≪ NF .

Notice also that if the second order analysis is performed using the direct–
adjoint method, both ν0

i (t) and λ(t) are known. Thus, the gradient of the objec-
tive function can be additionally computed at a low cost by (3.36) and compared
for verification purposes to that obtained by (3.44).

3.4.3 Time discretization

In practice, the inverse problem is always solved in the discrete time setting
using the discretized counterparts of the continuous-time formulas, see (3.33).
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3.4.3.1 Objective function

In the discrete time setting, the objective function (3.34a) assumes the fol-
lowing form:

F (µ) :=
1

2
dTd, (3.48a)

where the vector d denotes the difference between the measured and the simu-
lated discrete responses,

d := aM − a. (3.48b)

Both the DDM and the AVM can be used to perform sensitivity analysis.
The time complexities are summarized in Table 3.1. They are the same as in
the continuous time setting, provided that solving (3.33c) (more exactly, its
differentiated and adjoint versions) takes significantly more time than other
operations.

Table 3.1. Time complexity of sensitivity analysis of the inverse problem (Nµ is the number
of identified parameters; NF is the number of analyzed functions).

DDM AVM
First order analysis O(Nµ) O(NF )
Second order analysis O(N2

µ) O(NF +Nµ)

3.4.3.2 Sensitivity analysis

The first and second order direct derivatives of F (µ) are given by

Fi(µ) = −dTai, (3.49)

Fij(µ) = aT
i aj − dTaij , (3.50)

where ai and aij are the first and second order derivatives of the response vector,

ai = Baνν0
i , (3.51)

aij = Baνν0
ij . (3.52)

The DDM computes them by solving the differentiated versions of (3.33c),

Pi(µ)a = [I−P(µ)Baν ]ν0
i , (3.53)

Pi(µ)aj +Pj(µ)ai = [I−P(µ)Baν ]ν0
ij , (3.54)
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where ai is computed in a similar way as ai in (3.51). Equation (3.53) needs to
be solved Nµ times, while (3.54) requires as many as 1

2Nµ(Nµ + 1) solutions.
However, notice that (3.33c), (3.53) and (3.54) differ by the left-hand side only
and all have the same system matrix, so that successive solutions might be
significantly faster than the first solution.

The AVM computes the derivative of F (µ) as

Fi(µ) = −λTPi(µ)a, (3.55)

where λ is the adjoint vector that satisfies the equation adjoint to (3.33c), that is

[Baν ]Td =
[
I−BTP(µ)

]
λ. (3.56)

Equation (3.56) needs to be solved once for each of the analyzed functions, that
is a total of NF times.

Solved (3.53) and (3.56) (a total ofNµ+NF solutions), the second derivatives
of F (µ) can be computed using the direct–adjoint method as

Fij(µ) = aT
i aj − λTPi(µ)aj − λTPj(µ)ai, (3.57)

which is the discrete-time counterpart of (3.47). Such an approach is usually
faster than that of the DDM and (3.50), and it additionally allows the gradient
of F (µ) to be quickly computed using (3.55) as well as (3.49), which can be
used for verification purposes.





4

Model-free structural health monitoring

The previous chapter has introduced the virtual distortion method in a time-
domain formulation, emphasizes its characteristically nonparametric approach
to structural modeling and hints at the possibility of a purely experimental mod-
eling based on experimentally measured impulse response functions. This chap-
ter aims at exploring this possibility: it presents, discusses and verifies experi-
mentally a VDM-based approach to structural health monitoring that directly
utilizes the experimentally measured structural impulse responses. Even though
the approach allows parametrized modifications and damages to be identified,
the response of the modified structure is modeled in an essentially local and
nonparametric or data-driven way. The approach obviates the need for a para-
metric numerical modeling and for laborious initial model updating. Moreover,
no topological information about the global structure is required, besides po-
tential locations of the modifications given in the terms of the set of the related
degrees of freedom (DOFs). In the field of SHM, these features are characteristic
enough to warrant the name of a model-free approach. The chapter revises and
extends the research presented in [29, 30, 38, 41–45].

The first section offers an overview of the state-of-the-art and an introduc-
tion. The second section states the time-domain formulation, including the di-
rect problem of modeling the response of the modified structure, the inverse
problem of identification of structural modifications along with its sensitivity
analysis, and discusses the discretization process. A corresponding formulation
in frequency domain is presented in the third section. The fourth section dis-
cusses a possible extension to identification of inelastic impacts. Finally, selected
experimental results are presented in the last section. A 3D truss structure with
70 elements and 26 nodes is used. The approach is tested in identification of
mass modifications that occur in a single node or in two nodes concurrently.
Given the initially measured local quasi impulse responses, even a single sensor
and a single testing excitation are sufficient for identification.
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4.1 State-of-the-art and introduction

A general motivation behind the research on the nonparametric approach
investigated in this chapter is the need for a practical identification technique
that could be used in black-box type global monitoring systems for identification
of modifications, external dynamic loads and damages of real-world, large and
complex structures.

Most of the low-frequency methods used for global structural health mon-
itoring [11, 12, 15, 183–186] can be classified into the two following general
groups:

• Model-based methods, which rely on a parametric numerical model of the
monitored structure. Various types of such models can be used, includ-
ing modal models [81, 187, 188], models based on various formulations
of the Finite Element (FE) method [57, 189–193] or on a continuous for-
mulation [194]. The identification is stated in the form of the problem of
a minimization of the discrepancy between the measured response1 of the
damaged structure and the computed response of the modeled structure.
A set of parameters of the model needs to be designated that is assumed
to capture important characteristics of the involved structural modifica-
tions; these parameters are then used as the optimization variables. The
optimization is performed either in an analytical way [195] or using com-
putational intelligence techniques, such as genetic algorithms [194, 196–
198] or others [199].

• Pattern recognition methods rely on a database of numerical fingerprints
of low dimension that are extracted from several responses of the modi-
fied structure [200–204]. The responses that are used to form the database
need to be collected ahead of the identification either by simulations or by
experimental measurements of the involved structure with various modifi-
cation scenarios implemented [205]. The fingerprints should discriminate
well between the unmodified structure and the scenarios considered for
identification. Given the database and the measured response of the moni-
tored structure, the actual modification is identified using the fingerprints
only, without a direct insight into their actual mechanical meaning. Tech-
niques of computational intelligence, such as neural networks [206–210],
are usually used for this purpose. As a result, neither a numerical model
of the structure nor simulation is required at the identification stage.

1Or certain structural characteristics, which can be extracted from measured response, such
as modal parameters (natural frequencies, mode shapes or curvatures, damping ratios, etc.).
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Most of these methods can be used for full identification, that is they are capable
of detecting, localizing and quantifying the unknown modification or damage,
see [186] for a comparison of two specific methods. However, in case of many
structures, it may not be possible to actually introduce the modifications in order
to perform the measurements and build the fingerprint database. Similarly, an
accurate numerical model of a complex real-world structure may be hard to
obtain and not available [211–213].

Therefore, there is a third group of methods, which rely on certain structural
invariants of the monitored structure that can be computed directly from the
measured response [214]. Most often, these invariants are modal [15] or based
on wavelet or time series analysis [215]. Compatibility of the strain tensor and
the corresponding spatial filters are considered in [216, 217]. Lyapunov expo-
nents are used for monitoring of a nonlinear structure in [218], while [219] tests
the invariants related to recurrence plots and [220] deals with trajectory pat-
terns in diagnostics of rotating machinery. The response surface methodology
is discussed in [221, 222]. Modification is detected by assessing the discrepancy
between the invariants of the original undamaged structure and the invariants
computed from the performed measurements. By a proper spatial distribution
of sensors in the structure, these invariants can be compared locally, which may
allow the detected modification to be also approximately localized.

The approach described in this chapter avoids actual modifications as well
as parametric numerical modeling of the structure, and so it could be classified
to the third group. On the other hand, it has no clearly defined invariant, and
unlike other methods from this group, it is capable of quantification of paramet-
rically expressed damages. The damages are assumed here to be quantified in
terms of absolute modifications ∆M and ∆K to the structural mass and stiffness
matrices. In line with the general methodology of the VDM, these modifications
are modeled by the equivalent pseudo loads p0(t) that act in the related degrees
of freedom (DOFs) of the unmodified structure. As defined in (4.7), the pseudo
loads consist of two parts: one imitates the inertial effects of mass modifica-
tions, while the other implements the virtual distortions. As a result, a single
vector of the pseudo loads models mass modifications and stiffness-related dam-
ages, which is unlike the more intuitive standard approach of the VDM, where
separate virtual distortions κ0(t) are used for modeling of uniform stiffness mod-
ifications of the involved finite elements, see (3.28). However, such distortions
are not easy to be applied experimentally, which confines them to applications
with a known FE model of the structure.

Given the modifications, the direct problem consists of computing the re-
sponse of the damaged structure to a certain testing excitation, given the base-
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line response of the original unmodified structure and a set of its experimen-
tally obtained impulse response functions. The influence of modifications on the
response is computed by convolving the equivalent pseudo loads with the im-
pulse responses. In time domain, the pseudo loads are given in the form of a
unique solution to a certain linear integral equation of the Volterra type, which
is discretized into a large ill-conditioned structured linear system. The system
is solved using the conjugate gradient least squares algorithm [128], which has
regularizing properties. The block Toeplitz structure of the system matrix al-
lows the necessary matrix–vector products to be quickly computed using the
fast Fourier transform, while the matrix is stored in computer memory in a re-
duced form. In frequency domain, the pseudo loads can be found at a smaller
numerical cost for each frequency of interest separately; however, this is at the
cost of a losing the direct control over the regularization level of the solution.

As in the previous chapter, the inverse problem of identification of struc-
tural modifications is formulated as an optimization problem of minimizing the
discrepancy between the measured and the modeled structural responses to a
given testing excitation. The adjoint variable method [179–181] is employed for
fast and exact first and second order sensitivity analysis, so that quickly con-
vergent Newton optimization algorithms can be used in order to speed up the
identification.

4.2 Time-domain formulation

The time-domain formulation is directly based on the general formulation
of the VDM, which is described in Chapter 3. The derivations of the direct and
the inverse problems are analogical to those presented in Sections 3.3 and 3.4
respectively. However, there are two important differences that stem from the
intended experimental and nonparametric character of the approach:
• Only pseudo loads are used for modeling the structural damages.

• Experimentally obtained responses to quasi impulsive excitations have to
be used instead of the exact impulse responses (Subsection 4.2.1.4), since
the latter are impossible to obtain experimentally.

4.2.1 The direct problem

In agreement with the general methodology of the VDM, structural mod-
ifications are modeled with the equivalent pseudo loads, which are coupled to
the response and act in the unmodified structure to imitate the effects of the
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modifications. Hence, similarly as in (3.1) and (3.31), the time-domain response
a(t) of the modified structure to a given external excitation p(t) is expressed as
a sum of

1. the response aL(t) of the original unmodified structure to the same ex-
ternal excitation, which is called the linear response, and

2. the response of the same unmodified structure to the pseudo loads p0(t),
which is called the residual response and denoted by uR(t).

The response is found in two steps: first the pseudo loads are computed and
then the corresponding response. The pseudo loads are coupled to the response,
hence they are given in an implicit form and have to be found in the first step
by solving the integral equation (4.9b), which is the counterpart of (3.32).

4.2.1.1 Residual response

Let p0(t) be a vector of certain pseudo loads that excite the original unmod-
ified structure, and denote by uR(t) the vector of the corresponding structural
response. The structure is assumed to be linear and governed by the following
equation of motion:

MüR(t) +Cu̇R(t) +KuR(t) = p0(t), (4.1)

where M, C and K are respectively the mass, damping and stiffness matrices
of the unmodified structure.

The structure is linear, hence the response can by expressed as in (2.17),
that is in the form of a convolution of the pseudo load vector p0(t) with the
structural impulse responses that are collected in the matrix H(t),

uR(t) =

t∫
0

H(t− τ)p0(τ) dτ, (4.2a)

üR(t) = M−1p0(t) +

t∫
0

Ḧ(t− τ)p0(τ) dτ, (4.2b)

or, using the operator notation, as in (2.20),

uR(t) =
(
Hp0

)
(t), (4.3a)

üR(t) = M−1p0(t) +
(
Ḧδp

0
)
(t)

=
(
Ḧp0

)
(t),

(4.3b)
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where H and Ḧδ are the matrix Volterra operators that correspond to convolu-
tions with the respective impulse responses, and Ḧ = M−1I + Ḧδ, where I is
the identity operator. Notice that the measured impulse responses are discrete,
so that the impulsive term is in practice incorporated into the response at time
t = 0 and the discretized versions of the operators H and Ḧ can be obtained
directly from the experimental measurements, see Subsection 4.2.3.

4.2.1.2 Structural modifications and the equivalent pseudo load

Let ftest(t) be an external excitation (testing excitation) and denote by uL(t)
the corresponding response of the unmodified structure. The equation of motion
can be stated as

MüL(t) +Cu̇L(t) +KuL(t) = ftest(t). (4.4)

The modified structure, if subjected to the same testing excitation ftest(t), re-
sponds with u(t). This response satisfies the following equation of motion, com-
pare with (3.25):

(M+∆M) ü(t) +Cu̇(t) + (K+∆K)u(t) = ftest(t), (4.5)

where the structural modification (damage) is defined by ∆M and ∆K, and
where it is assumed that these modifications do not considerably influence the
damping properties for the reasons mentioned in Subsection 3.3.1. The modifi-
cation terms in (4.5) can be moved to the right-hand side to yield the following
analogue of (3.27):

Mü(t) +Cu̇(t) +Ku(t) = ftest(t) + p0(t), (4.6)

which is the equation of motion of the original unmodified structure, in which
the structural modification are modeled with the equivalent pseudo load vec-
tor p0(t),

p0(t) = −∆Mü(t)−∆Ku(t). (4.7)

Unlike in (3.28), a single pseudo load vector is used here to model both types of
modifications simultaneously and it is thus a sum of the two respective parts.

According to (4.6), the response u(t) depends on the excitation ftest(t) and
on the pseudo load p0(t). The structure is linear, and by a comparison of (4.1),
(4.4) and (4.6), the response u(t) turns out to be the sum of the linear response
uL(t) and the residual response uR(t),

u(t) = uL(t) + uR(t), (4.8a)

ü(t) = üL(t) + üR(t). (4.8b)
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Equations (4.3) is substituted into (4.8); a subsequent substitution of the result
into (4.7) yields the following system of Volterra integral equations of the second
kind with the pseudo load vector p0(t) as the unknown:

−∆MüL(t)−∆KuL(t)

=
(
I+∆MM−1

)
p0(t) +

((
∆MḦδ +∆KH

)
p0
)
(t).

(4.9a)

In practice, such a system is usually significantly ill-conditioned. However, it
follows from the Riesz theory [112] that it is well-posed, provided the matrix I+
∆MM−1 is nonsingular or, equivalently, if the matrix M+∆M is nonsingular.
Therefore, (4.9a) has a unique solution, if the considered mass modification is
small enough to uphold the positive definiteness of the modified mass matrix
M+∆M. This is a requirement that is satisfied in all practical cases, unless the
modification is large enough to remove all the mass related to selected DOFs
of the global structure. Otherwise, (4.9a) becomes an ill-posed problem, so that
in certain uncommon cases its solution may then not exist (for example in the
case of the testing excitation applied in a detached massless DOF, which is
impossible in practice).

If the operator Ḧ is used instead of Ḧδ, then (4.9a) takes the following form:

−∆MüL(t)−∆KuL(t) = p0(t) +
((

∆MḦ+∆KH
)
p0
)
(t), (4.9b)

which does not directly involve the unknown mass matrix M. Even though
the formulation of (4.9b) is not standard, it seems to be more practical: the
experimentally measured impulse response incorporates an impulsive term at
t = 0, so that in practice a discretized version of Ḧ is easier to be obtained than
that of Ḧδ. Notice that, besides the unknown pseudo load, all the terms in (4.9b)
are known in an experiment. Thus, given the modifications, the equation can
be formed and solved to obtain the equivalent pseudo load vector p0(t). Notice
also that it can be deduced from (4.7) or (4.9b) that p0(t) is nonzero only in
the DOFs that are directly related to the modifications (correspond to nonzero
rows/columns of the modification matrices ∆M and ∆K). Consequently, the
actual dimensions of (4.9b) are significantly reduced with respect to the total
number of all structural DOFs, and only a correspondingly reduced impulse
response matrix is required to form the equation instead of the full matrix H(t).

4.2.1.3 Response of the modified structure

The modifications are modeled with the equivalent pseudo load p0(t) that
acts in the original unmodified structure. Given the response uL(t) of unmod-
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ified structure to the testing excitation, the pseudo load equivalent to a given
modification can be obtained by solving the system (4.9b). Using (4.8) and
(4.3), the response of the modified structure to the same testing excitation can
be found to be the sum of the response of the unmodified structure and the
cumulative effects of the pseudo loads,

u(t) = uL(t) +
(
Hp0

)
(t), (4.10a)

ü(t) = üL(t) +
(
Ḧp0

)
(t). (4.10b)

4.2.1.4 Experimental quasi impulse responses

The solution to the direct problem outlined so far assumes that the structural
impulse response functions are measured and available. However, exact impulse
responses are hardly available in practice: one can measure only responses to
quasi impulsive excitations that last several time steps. Two solutions are pos-
sible:

1. either the measured responses are deconvolved with respect to the ac-
tually applied quasi impulsive excitations in order to obtain the exact
impulse responses

2. or, as in Subsection 2.2.4.1, the measured responses are directly used
in computations by a representation of the pseudo load in terms of the
experimentally applied quasi impulsive excitations.

The first approach requires a separate ill-conditioned deconvolution to be per-
formed for each pair of a quasi impulsive excitation and the corresponding re-
sponse. This is avoided in the second approach, which implicitly embeds the
deconvolutions in a modified version of (4.9b). The pseudo loads are expressed
in the form of a convolution of the actually applied quasi impulsive excita-
tions qi(t), which all have to satisfy qi(t) = 0 for t ≤ 0, with certain unknown
functions pi(t),

p0i (t) = (qi ∗ pi) (t) =
t∫

0

qi(t− τ)pi(τ) dτ, (4.11a)

where i indexes all DOFs related to the considered modifications and subjected
to the excitation qi(t). Equation (4.11a) can be collected for all involved DOFs
and stated in the operator notation as

p0(t) = (Qp) (t), (4.11b)
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where Q is the corresponding diagonal matrix convolution operator. A substi-
tution of (4.11b) into (4.9b) and (4.10) yields their following counterparts:

−∆MüL(t)−∆KuL(t) =
((

Q+∆MḦ+∆KH
)
p
)
(t), (4.12)

and

u(t) = uL(t) + (Hp) (t), (4.13a)

ü(t) = üL(t) +
(
Ḧp

)
(t), (4.13b)

where, in comparison to the symbols used in (4.9b) and (4.10), the following
substitutions have been performed:

H←HQ,
Ḧ← ḦQ.

(4.14)

In both cases the resulting H and Ḧ are the matrix integral operators that
correspond to the convolutions with the experimentally measured responses to
the actually applied quasi impulsive excitations. Notice that if the experimen-
tally applied excitation is indeed impulsive, then Q = I and (4.12) and (4.13)
simplify to (4.9b) and (4.10).

4.2.1.5 Required data and computations

The VDM-based procedure described above uses essentially a local nonpara-
metric model of the unmodified structure that consists of its
• Structural impulse responses, which can be (Subsection 4.2.1.4) either

exact or approximate, and which are used to form the required matrix
integral operators.

• Structural responses uL(t) and üL(t) to the testing excitation ftest(t).
These characteristics can be measured experimentally prior to modeling of the
modifications. According to (4.7), the pseudo loads vanish in the DOFs that
are not directly related to the modification. As a result, only a reduced impulse
response matrix is required: the responses that constitute the model need to
be measured only by the sensors intended for identification and in the DOFs
related to potential modifications. Depending on the assumed form of these
modifications, they can form only a small subset of all structural DOFs. As
a result, full instrumentation of the involved structure is not necessary, which
makes experimental investigations more feasible.
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Given such a model of the unmodified structure and a modification defined
by ∆M and ∆K, the corresponding response of the modified structure to the
same testing excitation f(t) is computed in two steps:

1. The equivalent pseudo load vector p0(t) or the corresponding convolution
function p(t) is found by solving respectively (4.9b) or (4.12).

2. The response is computed by (4.10) or (4.13).

Notice that all these computations are based directly on the experimentally
measured data, so that a parametric numerical model of neither the unmodified
nor the modified structure needs to be built and updated.

4.2.2 The inverse problem

In time domain, the inverse problem is stated in the standard form of an
optimization problem of minimization of the mean square distance between the
measured and the modeled displacement responses of the modified structure to
a certain testing excitation ftest(t). The direct differentiation method as well as
the adjoint variable method are employed for an exact first and second order
sensitivity analysis; for a single objective function the latter method is faster by
one order of magnitude, see Table 3.1 or [179–181]. Thanks to the fast second
order sensitivity analysis, Newton optimization methods can be used for fast
convergence and identification [137]. Basically, a similar formulation is used as
in Section 3.4, despite that only pseudo loads and experimental quasi impulse
responses are used for modeling purposes.

4.2.2.1 Objective function

Given the testing excitation ftest(t), the time-domain identification of the un-
known modification is based on the comparison between the measured response
uM(t) of the modified structure and its modeled response u(t). The identifi-
cation is equivalent to the minimization of the objective function defined as
in (3.34a):

F (µ) :=
1

2
⟨d,d⟩ , (4.15a)

where µ is a vector of parameters that fully define the modification ∆K and
∆M, and d(t) is the difference between the measured and the modeled response
defined as in (3.34b),

d(t) := uM(t)− u(t). (4.15b)
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4.2.2.2 Direct differentiation method

Gradient. Similar as in (3.34), a direct differentiation of the displacement re-
sponse (4.13a) with respect to the ith modification parameter µi yields

ui(t) :=
∂

∂µi
u(t)

= (Hpi) (t),

(4.16a)

so that

Fi(µ) :=
∂

∂µi
F (µ)

=− ⟨d,ui⟩
=− ⟨d,Hpi⟩ .

(4.16b)

Equations (4.16) involve the derivatives pi(t) of the convolution function. The
DDM computes them by solving (separately for each modification parameter µi)
the differentiated (4.12),

−∆Miü(t)−∆Kiu(t) =
((

Q+∆MḦ+∆KH
)
pi

)
(t). (4.17)

Hessian. Direct differentiation of (4.16) with respect to µj yields the second
derivative uij(t) of the displacement response,

uij(t) :=
∂2u(t)

∂µi∂µj

=(Hpij) (t),

(4.18a)

and the second derivative of the objective function,

Fij(µ) :=
∂2F (µ)

∂µi∂µj

= ⟨ui,uj⟩ − ⟨d,uij⟩ .
(4.18b)

Equations (4.18) involve the first and second derivatives of the pseudo loads.
The DDM computes the first derivatives by solving (4.17) separately for each i,
while the second derivatives pij(t) are computed using (4.17) differentiated once
again,

−∆Miüj(t)−∆Kiuj(t)−∆Mjüi(t)−∆Kjui(t)

=
((

Q+∆MḦ+∆KH
)
pij

)
(t),

(4.19)
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where it is assumed that ∆M and ∆K depend linearly on the modification pa-
rameters µi and µj , so that their second derivatives vanish, ∆Mij = ∆Kij = 0,
which happens for example if the modification parameters are simply the added
or removed masses, cross-sections of elements or their stiffnesses, etc. Equation
(4.19) needs to be solved several times, separately for each pair of i and j.

4.2.2.3 Adjoint variable method

If the number of modification parameters is denoted by Nµ, then the DDM
needs Nµ solutions of (4.17) to compute the gradient of the objective function
and as many as O(N2

µ) solutions of (4.19) to compute its Hessian. Both equations
are systems of Volterra integral equations, and hence sensitivity analysis via the
DDM is numerically costly to a significant degree. If a single objective function
is used, the AVM allows these costs to be reduced by one order of magnitude,
see Table 3.1.

Gradient. Similarly as described in Subsection 3.4.2.1, the AVM collects all
the terms in (4.17) on the right-hand side and takes the scalar product with
a vector λ(t) of adjoint variables. The result vanishes, and so it can be added
to (4.16b),

Fi(µ) = −⟨d,Hpi⟩+
⟨
λ,
(
Q+∆MḦ+∆KH

)
pi

+∆Miü+∆Kiu
⟩
.

(4.20)

All the terms containing pi(t) in (4.20) are collected together to yield

Fi(µ) =
⟨
−H⋆d+

(
Q⋆ + Ḧ⋆

∆M+H⋆∆K
)
λ,pi

⟩
+ ⟨λ,∆Miü+∆Kiu⟩ ,

(4.21)

where the superscript ⋆ denotes the adjoint operator, see (3.42) or (A.33). The
derivatives pi(t) of the convolution functions are eliminated from (4.21) by
choosing the vector λ(t) of the adjoint variables in such a way that the first
scalar product vanishes. As a result,

Fi(µ) = ⟨λ,∆Miü+∆Kiu⟩ , (4.22)

provided that λ(t) is a solution to the adjoint integral equation,

(H⋆d) (t) =
((

Q⋆ + Ḧ⋆
∆M+B⋆∆K

)
λ
)
(t), (4.23)

which is a counterpart of (3.43).
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Notice that the adjoint variable λ(t) is independent of i, hence the gradient
of the objective function ∇F (µ) can be computed at the cost of only a single
solution of the adjoint integral equation instead ofNµ solutions of (4.17) required
by the DDM. Nevertheless, the solution needs to be repeated separately for each
analyzed objective function.

Hessian. The direct–adjoint method, which seems to be the quickest from the
family of the second order adjoint variable methods, see, e.g., [181], is employed
here to reduce the numerical costs of computing the Hessian of the objective
function by one order of magnitude, that is from O(N2

µ) to O(Nµ). In exactly the
same way as in the first order sensitivity analysis, the second derivatives pij(t) of
the convolution function are eliminated from (4.18b) by using the scalar product
of the vector λ(t) of the adjoint variables and (4.19). A considerably simpler
formula for the element Fij(µ) of the Hessian can be obtained this way,

Fij(µ) = ⟨ui,uj⟩+ ⟨λ,∆Miüj +∆Mjüi +∆Kiuj +∆Kjui⟩ , (4.24)

where the first derivatives pi(t) of the convolution function have to be obtained
using the DDM, that is by solving Nµ times (4.17), and

üi(t) :=
∂

∂µi
ü(t)

=
(
B̈pi

)
(t)

(4.25)

is the vector of the derivatives of the acceleration response.
In order to perform the second-order analysis, ui(t) and pi(t) have to be

known. The gradient of the objective function can be thus quickly computed
using (4.16b) and verified against the gradient obtained by (4.22).

4.2.2.4 Required data

The inverse problem is solved by iterative optimization. The objective func-
tion is computed in its each step, possibly along with the gradient and the
Hessian. The following purely experimental data are required for this purpose:
• the measured response uM(t) of the modified structure to a certain re-

producible testing excitation ftest(t);
• the measured responses uL(t) and üL(t) of the original unmodified struc-

ture to the same testing excitation ftest(t);
• the matrices H(t) and Ḧ(t) of measured responses of the unmodified

structure to quasi impulsive excitations qi(t), which are respectively used
to form the required matrix integral operators B, B̈ and Q.
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As it is the case in the direct problem, measurements of the responses of the
unmodified structure are restricted only to the sensors intended for identification
and to the DOFs related to potential modifications (only a reduced quasi impulse
response matrix is required). The response of the modified structure needs to
be measured only by the sensors intended for identification.

4.2.3 Time discretization and numerical solution

All the required responses are in practice discrete and not continuous, that
is they are vectors sampled in discrete time points every ∆t. As mentioned
in Subsection 4.2.1.4, two formulations of the direct and the inverse problems
are possible, which use either the exact impulse responses or the experimentally
obtained quasi impulse responses. In the first case, the direct problem uses (4.9b)
and (4.10), and in the second case (4.12) and (4.13) are used. In the discrete-
time setting, the exact discrete impulse responses, denoted here by D(t) and
D̈(t), are the discrete responses to one-time-step unit excitations (which can be
obtained by a deconvolution), so that

D(t) :≈ H(t)∆t, (4.26a)

D̈(t) :≈

{
M−1 + Ḧδ(0)∆t if t = 0,

Ḧ(t)∆t otherwise,
(4.26b)

where the impulsive component of Ḧ(t) is included in D̈(0), compare to (4.3b).
If measured discrete responses to multistep quasi impulsive excitations are used,
then simply

D(t) :≈ H(t)∆t, (4.27a)

D̈(t) :≈ Ḧ(t)∆t, (4.27b)
Q(t)← Q(t)∆t, (4.27c)

where the right-hand side matrix Q(t) contains on the diagonal the experimen-
tally applied quasi impulsive excitations qi(t) and zeros elsewhere.

4.2.3.1 Direct problem

Exact impulse responses. By the time discretization defined in (4.26), the
integral equation (4.9b) is transformed at each considered time step t into the
following discretized linear system:
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t∑
τ=0

(
δτtI+∆MD̈(t− τ) + ∆KD(t− τ)

)
p0(τ)

= −∆MüL(t)−∆KuL(t),

(4.28)

where δτt is Kronecker’s delta and I denotes the identity matrix of appropriate
dimensions. Equation (4.28) is then collected for all the considered time steps t
and stated in the following form of a single large linear system,

Ap0 = −∆MüL −∆KuL, (4.29)

where p0, üL and uL are the vectors that collect the pseudo loads and the
respective responses of the unmodified structure in all time steps and in all
DOFs related to structural modifications. The system matrix A is a structured
block matrix with Nt × Nt lower triangular Toeplitz blocks, where Nt is the
number of time steps. The structure of a typical matrix is illustrated in Fig. 4.2.
The number of blocks depends on the type of the structure. For example, 3D
trusses have three DOFs per node, and so A has 3Nn × 3Nn blocks, where Nn
is the number of the nodes related to structural modifications. For 2D trusses,
which have two DOFs per node, it has 2Nn × 2Nn blocks. In the general case,
there can be 6Nn × 6Nn blocks.

Equation (4.29) is solved to obtain the vector p0 of the discretized pseudo
loads; the modeled discrete responses of the modified structure are then com-
puted by the following discretized counterparts of (4.10):

u = uL +Dp0, (4.30a)

ü = üL + D̈p0, (4.30b)

where the matrices D and D̈ are block matrices with Toeplitz blocks that are
the discretized counterparts of the integral operators in (4.3).

Experimental quasi impulse responses. If the experimentally measured
responses to multistep quasi impulse excitations are directly used, then the
discretization defined in (4.27) is applied to (4.12). In each time instance t it
yields

t∑
τ=0

(
Q(t− τ) + ∆MD̈(t− τ) + ∆KD(t− τ)

)
p(τ)

= −∆MüL(t)−∆KuL(t),

(4.31)

which, if it is collected for all time steps t, takes the same formal form as (4.29),

Ap = −∆MüL −∆KuL, (4.32)
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although the block matrix A is constructed here in a different way. Given the
initial data, (4.32) needs to be solved first, and then the resulting vector p is
substituted into discretized (4.13),

u = uL +Dp, (4.33a)

ü = üL + D̈p, (4.33b)

to obtain the discrete response of the modified structure.

4.2.3.2 Inverse problem and sensitivity analysis

As in the case of continuous time setting, sensitivity analysis is illustrated
here using the formulation with experimentally measured responses to multistep
quasi impulsive excitations, and the AVM is used. Due to the formal similarity
of (4.29) to (4.32) and of (4.30) to eq:ch04-discreteResponseNonimp, the case
of exact impulse responses can be treated in an analogous manner.

Identification of the unknown modification parameters µ that fully define
the unknown damage ∆K and ∆M is equivalent to the minimization of the
following objective function:

F (µ) :=
1

2
dTd

=
1

2
⟨d,d⟩ ,

(4.34)

where
d := uM − u (4.35)

and the vector uM denotes the measured discrete response of the modified struc-
ture (collected in all time steps and in all considered sensors) to the testing
excitation ft(t).

The derivative Fi(µ) of the objective function with respect to µi can be
computed using the discrete version of (4.22),

Fi(µ) = ⟨λ,∆Miü+∆Kiu⟩ , (4.36)

where the vector λ collects the discretized adjoint variables that can be obtained
at the cost of a single solution of the discrete adjoint equation,

ATλ = BTd, (4.37)
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which is the discrete-time counterpart of the continuous adjoint integral equa-
tion (4.23). The Hessian of the objective function can be computed similarly,

Fij(µ) = ⟨ui,uj⟩+ ⟨λ,∆Miüj +∆Mjüi +∆Kiuj +∆Kjui⟩ , (4.38)

where

ui = Dpi, (4.39a)

üi = D̈pi, (4.39b)

and the vector pi of the first order derivatives of the discrete convolution coef-
ficients has to be obtained by solving (separately for each modification param-
eter µi) the discrete-time counterpart of (4.17),

Api = −∆Miü−∆Kiu. (4.40)

As in (4.19), it is assumed in (4.38) that the second derivatives ∆Mij and ∆Kij

of the modifications vanish. The time complexity of Hessian computation is lin-
ear with respect to the number Nµ of the considered parameters of modification,
instead of the quadratic complexity of the DDM, and Table 3.1 applies. Notice
that the second order sensitivity analysis requires computation of ui, which can
be then used in the discrete-time counterpart of (4.16b),

Fi(µ) = −⟨ui,d⟩ , (4.41)

for a low-cost verification of the gradient obtained via (4.36).
Given the quasi impulse response matrices D and D̈, experimentally applied

quasi impulsive excitations Q, as well as the discrete responses uM, uL and
üL to the testing excitation, the computations required for a first order and a
second order sensitivity analysis are summarized in Table 4.1.

4.2.3.3 Numerical solution

Given the required discrete measurement data, identification of structural
modifications amounts to an iterative minimization of the objective function
and might seem to be straightforward. In each iteration, a sensitivity analy-
sis is performed as described in Table 4.1. Two square linear systems, (4.32)
and (4.37), have to be solved to obtain p and λ; if a second order optimization
method is used, then also all pi have to be computed by solving (4.40) sepa-
rately for each optimization variable µi. In all cases, the system matrix is either
A or AT. However, all responses are stored and processed in time domain, which
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Table 4.1. Computations required for a first order and a second order sensitivity analysis in
the discrete time setting. It is assumed that D, D̈, Q, uM, uL and üL are known.

1st order 2nd order Formula Computation
× × (4.31) system matrix A
× × (4.32) convolution functions p
× × (4.33) modeled responses u and ü
× × (4.35) residual vector d
× × (4.34) objective function F (µ)
× × (4.37) discrete adjoint variables λ

× (4.40) derivatives pi for all i
× × (4.36) gradient of the objective function ∇F (µ)

× (4.41) gradient of the objective function ∇F (µ)
× (4.38) Hessian of the objective function

often results in large dimensions of these matrices. In the case of a 3D truss,
A is a dense 3Nn × 3Nn block matrix with Nt × Nt blocks, where Nt is the
number of time steps and Nn is the number of the nodes related to the modifi-
cations. The total dimensions are thus 3NnNt × 3NnNt, and in case of a longer
time interval or a larger number of potential modifications, the matrices can
become huge and unmanageable by standard numerical techniques. Moreover,
as can be expected from the Toeplitz structure of its blocks [109], the matrix
is significantly ill-conditioned, and a regularization technique must be used in
order to obtain meaningful solutions.

Three effective numerical techniques can be used to address the problems
caused by the size and ill-conditioning of the matrix A:

1. The involved systems are solved using the fast iterative algorithm of con-
jugate gradient least squares [128]. There are two main reasons behind
the choice of the CGLS:

• The CGLS method has good regularizing properties. The number of
iterations plays the role of the regularization parameter: the more iter-
ations, the more exact but less regularized (that is more influenced by
the measurement error) is the solution;

• The system matrix A is used only in the form of the matrix–vector
products Ax and ATy. No costly matrix decompositions, factoriza-
tions and even no direct access to its elements are necessary. In fact,
the CGLS requires just two black-box procedures that implement the
respective multiplications.
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2. In the CGLS method, the system matrix A is present only implicitly in
the form of matrix–vector products, which can be quickly computed if
the block Toeplitz structure of A is exploited: For each Nt×Nt Toeplitz
block, the exact product can be computed in frequency domain using
an embedding in a circulant matrix and the FFT in time O(Nt logNt)
instead of O(N2

t ), see, e.g., [133].

3. Each block of A is an Nt × Nt lower triangular Toeplitz block, hence
it can be stored in computer memory in a reduced form using only Nt
elements instead of N2

t .

The next section presents another approach that converts the modeling and
identification problems into frequency domain and solves them separately for
each frequency line of interest. The total numerical cost is smaller; however, the
direct control over the regularization level is lost.

4.3 Frequency-domain formulation

The described problem is essentially transient, so that the time-domain for-
mulation described in the previous section seems to be quite natural. Moreover,
the numerical solution techniques like the CGLS allow for a good control over the
amount of regularization embedded into the computed solution. Nevertheless,
this is at the cost of the computational time, since the time-domain formulation
makes extensive use of the operation of convolution. The basic equation used
to model the pseudo loads that are equivalent to the modifications, (4.9b) or
(4.12), as well as its differentiated and adjoint versions, (4.17) and (4.23), are all
systems of linear integral equations of the Volterra type. Numerical solution of
such systems is considerably time-consuming, even with the effective numerical
techniques mentioned in Subsection 4.2.3.3.

In this section, the problem is transferred into frequency domain. As a result,
the original systems of Volterra integral equations are converted into a series of
simple decoupled discretized linear equations (a separate independent equation
for each frequency line of interest), which can be solved at a significantly smaller
total numerical cost. If necessary, the computed frequency-domain response can
be transformed back into time domain to obtain the time-domain responses. As
a result, the original objective function (4.15a) and the fast sensitivity analysis
based on the AVM are still possible. Alternatively, the frequency-domain formu-
lation highlights also the possibility of other objective functions based on modal
characteristics of the structure such as its natural frequencies.
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4.3.1 The direct problem

By applying the Fourier transform F to both sides of (4.4), the equilibrium
equation of the unmodified structure takes in frequency domain the following
quasi static form: (

−ω2M+ iωC+K
)
uL(ω) = ftest(ω), (4.42)

where the vectors uL(ω) and f(ω) are the frequency-domain response and the
testing excitation respectively. Given the excitation, the response can be ex-
pressed as

uL(ω) = H(ω)ftest(ω), (4.43)

where H(ω) is the frequency response matrix,

H(ω) =
(
−ω2M+ iωC+K

)−1
. (4.44)

The structural modifications have been defined in terms of the modifications
to the structural mass and stiffness matrices, ∆M and ∆K. The equilibrium
equation of the modified structure,(

−ω2(M+∆M) + iωC+K+∆K
)
u(ω) = ftest(ω), (4.45)

can be transformed into the equilibrium equation of the original unmodified
structure, (

−ω2M+ iωC+K
)
u(ω) = ftest(ω) + p0(ω), (4.46)

where the modifications are modeled with the vector p0(ω) of the equivalent
pseudo loads,

p0(ω) =
(
ω2∆M−∆K

)
u(ω). (4.47)

Equations (4.42), (4.44) and (4.46) yield together

u(ω) = uL(ω) +H(ω)p0(ω), (4.48)

which, if substituted into (4.47), yields the following frequency-domain counter-
part of (4.9b):(

I− ω2∆MH(ω) + ∆KH(ω)
)
p0(ω) = −

(
−ω2∆M+∆K

)
uL(ω), (4.49)

where I is the identity matrix of appropriate dimensions. Notice that ∆M and
∆K have nonvanishing entries only in the rows and columns that correspond to
the DOFs directly related to the modifications. In all other DOFs the pseudo
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loads vanish according to (4.47), so that (4.49) is in practice reduced to a small
linear system with dimensions 3Nn× 3Nn for a truss structure or 6Nn× 6Nn in
the general case, where Nn is the number of the nodes directly related to the
modifications. Accordingly, only the corresponding small submatrix of the full
frequency response matrix H(ω) needs to be estimated experimentally prior to
modeling and identification.

Given the required characteristics of the structure, that is the response uL(ω)
of the original unmodified structure and its frequency response matrix H(ω), as
well as the assumed structural modifications ∆M and ∆K, first the equivalent
vector p0(ω) of the pseudo loads is found by solving (4.49) and then the response
u(ω) of the modified structure is computed by (4.48). The computations need
to be repeated separately for each frequency line ω of interest.

4.3.2 The inverse problem

Given the frequency-domain response, various formulations of the objective
function are possible. The objective function can be based on fitting selected
modal characteristics, such as natural frequencies, as expressed for example by
the following:

F (µ) :=
∑
i

(
ωM
i − ωi(µ)

ωM
i

)2

, (4.50)

where ωM
i is the ith natural frequency of the modified structure identified in

a direct analysis of the measured response uM(ω), while ωi(µ) is the corre-
sponding natural frequency identified from the modeled response u(ω). Given
the frequency-domain response, the natural frequencies can be often found by
a simple peak-picking procedure or by the eigensystem realization algorithm
(ERA) [223], so that the corresponding value of the objective function (4.50) is
readily available. However, sensitivity analysis of (4.50) is more difficult: com-
putation of the derivatives of the natural frequencies requires the corresponding
mode shapes to be known [224–226], which in general might be also identified
by means of the ERA, but in practice less accurately than the natural frequen-
cies. Given the simplicity of (4.49) and (4.48) and the relatively narrow involved
frequency ranges, it might turn out that simple zero-order search techniques are
more reliable than gradient-based optimization algorithms.

In another formulation, the inverse Fourier transform F−1 (or, in practice,
the inverse fast Fourier transform) might be employed to obtain the time-domain
response. The standard time-domain objective function (4.15a) might be then
used, where
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d(t) := uM(t)−
(
F−1u

)
(t). (4.51)

Under reasonable assumptions2 quick first and second order sensitivity analysis
based either on the DDM or on the AVM can be straightforwardly applied in
the similar way as in the time-domain case.

4.3.3 FFT and windowing function

In principle, the frequency-domain responses and the frequency response
functions can be obtained from time-domain measured responses and quasi im-
pulsive excitations by employing the Fourier transform. However, in practice
all the measurements are discrete and of finite length, hence the fast Fourier
transform needs to be used together with a suitable windowing function, which
is required in order to decrease the inevitable spectral leakage. Out of vari-
ous windowing functions possible (see, e.g., Subsection 5.5.2), the exponential
window seems to provide best results, which is related to the quasi impulsive
character of the excitations.

4.4 Identification of inelastic impacts

This section discusses a possible extension of the described methodology to
identification of inelastic impacts. It is assumed that such an impact is fully
defined by the following parameters:

• impacting mass m,

• components vx, vy and vz of the impact velocity,

• and possibly, also the number k of the impacted DOF.

An inelastic impact can be relatively easily mimicked experimentally by

1. Attaching a single additional mass m in the kth node (impacted node).

2. Applying a quasi impulsive excitation to the attached mass in the impact
direction defined by (vx, vy, vz).

If the quasi impulsive excitation is measured, then the equivalent impact velocity
can be straightforwardly calculated by dividing the impulse of force by the
attached mass.

2In general, the derivative ui(ω) ought exist and be continuous with respect to ω and µi,
which is required by the Leibniz integral rule. In practice, it is always satisfied for real-world
structures.
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4.4.1 The direct problem

The inelastically impacting mass attaches to the impacted node, and can be
thus treated as an added mass. Therefore, structural response to an inelastic
impact can be modeled in a similar way as the response of a structure with a
single added mass. To this end, mass modification ∆M and the response uL(t)
of the unmodified structure to the impulsive excitation need to be known. The
former is defined by the mass m and the impacted node k. The latter depends
on the impulsive excitation ftest(t), which, unlike in the preceding section, is not
arbitrary and has to model the actual impact excitation:

ftest(t) := m
(
vxekx + vyeky + vzekz

)
δ(t), (4.52)

where δ(t) is the Dirac delta function, the impact occurs in the kth node along
the DOFs kx, ky and kz, and the corresponding vesors are denoted by ekx , eky

and ekz . Notice that in (4.52) the time-history of the excitation δ(t) has to be
assumed in advance, and that in practice certain quasi impulsive functions, like
the half-sine, might be considered instead of the Dirac delta.

The excitation (4.52) depends on impact parameters, hence the correspond-
ing response of the unmodified structure uL(t) cannot be measured in advance
and needs to be calculated as

uL(t) := m
(
vxu

L
kx(t) + vyu

L
ky(t) + vzu

L
kz(t)

)
, (4.53)

that is as the respective combination of the structural responses to unit impulsive
excitations uL

kx
(t), uL

ky
(t) and uL

kz
(t).

4.4.2 The inverse problem

Given the measured response of the structure to an inelastic impact (either
real or mimicked as described above), the assumed parameters of the impact
can be identified by minimizing the discrepancy between the measured and the
modeled structural responses. The unknown impact parameters are treated as
the optimization variables. The standard time-domain formulation (4.15a) of
the objective function can be used. If a frequency-domain formulation is used
instead, then besides the natural frequencies also the amplitude of the frequency
response have to be included in order to be able to differentiate between various
impact velocities, which affect the amplitude, but not the frequency content of
the response.
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4.5 Selected experimental results

This section presents selected experimental results to verify the practical
applicability of the described methodology. A 3D truss structure is used in a
problem of nonparametric identification of nodal mass modifications. The av-
erage relative error of identification of a single modifications is less than 5%.
The identification errors are larger in the case of two concurrent modifications,
which is a result of the ill-conditioning of the identification problem. The ac-
curacy of results depends on the characteristics, number and placement of the
testing excitations and sensors, as well as on the placement of modifications. The
problem of estimation of the limiting resolution of the methodology based on
the experimentally obtained nonparametric model of the unmodified structure
is a interesting area of further research.

The results presented in this section are obtained in time domain. Selected
results of mass identification obtained in a frequency-domain analysis can be
found in [43]. An example preliminary result of identification of stiffness modifi-
cation of a truss element is available in [30]; identification of an inelastic impact
is reported in [41].

4.5.1 The structure

The experimental verification uses a 3D truss structure with 26 nodes and
70 elements, see Fig. 4.1. It is constructed using a commercially available system
of spherical joints and connecting tubes [31]. The structure is 4 m long, and its
elements are circular steel tubes with the radius of 22 mm, the thickness of 1 mm
and the lengths of 0.500 m or 0.707 m. The mass of each joint is 0.23 kg, and
the total mass of the structure is approximately 32 kg. The two right-hand side
nodes in the scheme are free to move in the longitudinal direction only, while the
two opposite left-hand side nodes have restrained all their DOFs and are thus
turned into fixed supports. Only nodal mass modifications are considered. They
are implemented experimentally by attaching concentrated masses at either one
or two out of the nodes marked M1, M2 and M3 in Fig. 4.1. It is assumed that
the location of the modifications is known in advance and need not be identified.

4.5.2 Excitations and measurements

Figure 4.1 shows the location of the testing excitation ftest(t) and of the sin-
gle sensor intended for identification and used to measure the response uL(t) of
the original structure and the response uM(t) of the modified structure. A modal
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Figure 4.1. The 3D truss structure used in experimental verification: (top) scheme; (bot-
tom) a fragment of the real structure.

hammer is used to generate the testing excitation, as well as all the quasi impul-
sive excitations used in measurements of the necessary quasi impulse responses.
All the sensors are accelerometers; the signals from the accelerometers and from
the modal hammer are collected by a Brüel & Kjær data acquisition system
PULSE, sampled at 65.5 kHz and transferred to a desktop PC for further
analysis. The acquisition system internally double-integrated the acceleration
responses to recover the corresponding displacements. For each response, mea-
surements are recorded independently four times and then averaged in order
to diminish the adverse effects of the measurement noise. The CGLS method
is used thereafter to deconvolve the averaged responses with respect to the av-
eraged quasi impulsive excitations in order to obtain the exact discrete-time
impulse responses. A total of 15 000 time steps is recorded for each response,
which corresponds approximately to the time interval of 230 ms or 7.2 periods
of the first natural vibration (31.5 Hz).

In the case of two nodal mass modifications, the matrix A in (4.29) is a 6×6
block matrix; each of its block rows and block columns corresponds to one of
the six DOFs of the two nodes considered for modifications. If the full-length
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responses are used, each block is a 15 000×15 000 lower triangular Toeplitz sub-
matrix, and the total matrix dimensions are thus 90 000× 90 000; the structure
of such a matrix is illustrated in Fig. 4.23. The matrix is dense, and if stored
in the full form using standard 8-byte double floating point numbers, it would
require as much as 60.3 GB of memory storage. On the other hand, exploitation
of its Toeplitz block structure allows the matrix to be stored in 4.1 MB only.
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Figure 4.2. Modification of two nodal masses: structure of the system matrix A in (4.29).

4.5.3 Single nodal mass modification

In the first considered scenario, a single concentrated mass is attached to one
of the nodes M1, M2 or M3; the location of the modification is assumed to be
known in advance. Four different masses of 1.36 kg, 2.86 kg, 3.86 kg and 5.36 kg
are used in each of the three nodes; a total of 12 cases is thus tested. Such

3Notice the similarity of the structure of the matrix to that shown in Fig. 2.3. This em-
phasizes the central role of load identification and deconvolution procedures in the VDM and
the nonparametric approach described in this chapter.
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modifications can considerably alter the local dynamics in their neighborhood,
since they range from 100% to almost 400% of the structural mass related to
the modified node (joint mass plus half of the masses of the six neighboring
elements, which is 1.36 kg altogether). On the other hand, in comparison to the
total mass of the unmodified structure (32 kg), the relative mass modifications
are much smaller and range from 4.25% to 16.75%.

All identifications are performed using the Newton optimization algorithm
with exact second derivatives computed using the AVM. In each step of the op-
timization, the ill-conditioned system (4.29), as well as its differentiated version
and the adjoint system, are iteratively solved using 1000 CGLS iterations, which
allows the computed responses to stabilize numerically before being overly influ-
enced by the measurement errors. The results of identification might depend on
the length of the responses used in computations. In order to test their stability,
all the identifications are performed repeatedly using the response lengths vary-
ing from 250 up to 15 000 time steps (3.8 ms to 292 ms). The results are plotted
in Fig. 4.3. At short response lengths, the identification results are strongly
dependent on the number of the time steps used in computations; it is thus
assumed that at least 7500 time steps (115 ms or 3.6 periods of the first natural
vibration) have to be used for reliable results.
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Figure 4.3. Single nodal mass modification: identification results in dependence on the length
of the responses used in computations; the dotted gridlines mark the actual modifications.
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In general, the results of identification underestimate the actual modifica-
tions; the relative identification errors range between −8% and +1% with the
mean relative error of −4.6%. Figure 4.4 plots in the logarithmic scale the nor-
malized objective functions that are computed using 15 000 time steps for all
the four masses and the three considered nodes; the minima of all the curves are
clearly distinguishable. As an example, Fig. 4.5 compares the three full-length
responses that correspond to the best-fitting case of the mass 2.86 kg attached
in node M3 (identified mass 2.67 kg). The difference between uL(t) and uM(t),
that is the influence of the added mass on the measured response, is clearly
noticeable in the increase of the period of the basic oscillations; the fit between
the measured and modeled responses of the modified structure is almost perfect.
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Figure 4.4. Single nodal mass modification: normalized objective functions computed using
15000 time steps for all three nodes and four tested masses; the dotted gridlines mark the
actual modifications.

4.5.4 Modification of two nodal masses

In the second considered scenario, two nodal masses are simultaneously
attached in two nodes of the structure (M1 and M3). Six different cases are
tested, that is all the six possible combinations of M1 ∈ {1.36 kg, 2.86 kg} and
M3 ∈ {1.39 kg, 2.89 kg, 3.89 kg}.

In order to test the stability of the results, all the identifications are per-
formed repeatedly using the responses of different lengths: each 250 time steps
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Figure 4.5. Single nodal mass modification (node M3, actual mass 2.86 kg, identified mass
2.67 kg): the computed response u(t) and the measured responses uM(t) and uL(t) of the
modified and original structures respectively.

in the range from 7500 to 15 000 time steps, that is a total of 31 times. Figure 4.6
shows the results of all the identifications. They are obtained using a modified
Newton optimization algorithm and exact Hessians. Similarly as in the case of a
single nodal mass modification, the total modification mass is underestimated:
the relative identification errors range between −13% and −1.6% with the mean
of −5.2%.

For each of the two nodal masses, the relative identification errors are higher
than in the case of a single nodal mass modification, which is the result of a
significant ill-conditioning of the identification problem. As an example, Fig. 4.7
plots the contours of (the logarithm of) the objective function that corresponds
to the actual mass modifications (M1,M3) = (2.86 kg, 1.39 kg) and is computed
using 15 000 time steps. The minimum is found at (3.05 kg, 1.07 kg), so that the
relative identification errors are (7%, 23%). A high degree of ill-conditioning is
apparent in the shape of the objective function, which forms a characteristic
long and narrow valley. As a result, it is relatively easy to find the bottom line
of the valley (which approximately corresponds to the constant sum of the two
modifications), while the exact location of the minimum along the bottom line
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Figure 4.6. Modification of two nodal masses: identification results for different considered
lengths of the responses. The circles mark the actual modifications, the dots mark the identi-
fication results computed using 7500 (light dots) to 15 000 (dark dots) time steps.

(that is the differentiation between the masses) is very sensitive to measurement
errors and varies with the different numbers of time steps used in computations.
The degree of ill-conditioning can be quantified by the condition number of the
Hessian at the minimum, which is approximately 500; the related linear identifi-
cation problem has thus the condition number of approximately 22.4. Figure 4.8
compares the three responses related to the discussed case: the measured re-
sponse uL(t) of the original unmodified structure, the measured response uM(t)
of the modified structure and the response u(t) as modeled for the identified
mass modifications.
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Figure 4.7. Modification of two nodal masses: contours of (the logarithm of) the objective
function computed (using 15 000 time steps) for the actual modifications M1 = 1.36 kg and
M3 = 2.89 kg. The circle marks the actual modification, the dots mark the identification
results obtained for different considered numbers of time steps (7500 to 15 000).
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Figure 4.8. Modification of two nodal masses (M1, M3): measured response at the actual
masses (2.86 kg, 1.39 kg), modeled response for the identified masses (3.05 kg, 1.07 kg) and
the response of the original unmodified structure.





5

Virtual isolation of substructures
for local health monitoring

Chapters 3 and 4 discuss the theoretical formulation and an experimental imple-
mentation of the virtual distortion method in an inverse problem of identification
of structural modifications and damages; the close relation of the methodology
to load identification problems is emphasized. This chapter describes another
practical application of the VDM: the problem of substructure isolation through
virtual supports for the purpose of local structural health monitoring. The for-
mulation relies on load identification in an even more straightforward way, since
virtual supports are modeled in terms of their support reaction forces that are
identified in a typical problem of load identification. In other words, kinematic
boundary conditions on the substructural interface are modeled in terms of the
equivalent load boundary conditions.

The substructure isolation methodology has been proposed in [46–53]. The
next section discusses the general motivation behind the research in substruc-
turing. The second section briefly reviews the state-of-the-art. The third section
introduces the substructure isolation method and emphasizes its relation to the
problem of load identification. The fourth and fifth sections describe the process
of virtual isolation of a substructure in time domain and in frequency domain.
The sixth section illustrates the method using a numerical example. Finally, the
last section verifies it in an experimental study using a damaged aluminum can-
tilever beam. The setup uses up to three different global structures that share
the same substructure (the original beam, the beam with an additional “sponge
support” and with an additional mass) to test the robustness of the isolation
with respect to unknown modifications of the outside structure. Two typical
global health monitoring methods are applied at the substructural level, so that
the damage is identified based on comparison of either time-domain responses of
the substructure or its modal characteristics. In both cases the substructure is
successfully isolated and the damages are properly identified in a local analysis.
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5.1 Motivation

Research on damage identification in SHM as well as practical applications of
developed techniques often focus on large specialized structures, such as bridges,
tall buildings, dams, etc. Such complex structures are difficult to be monitored
globally using approaches of low frequency SHM due to at least four inherent
reasons:

1. Accuracy and reliability of parametric numerical models. Boundary con-
ditions and nonlinear components are often hard to model or even deter-
mine, which might be reflected in a poor accuracy of any global paramet-
ric numerical model of the monitored structure, such as its finite element
model.

2. Poor numerical convergence. In large problems of global identification
or model updating the numerical convergence is usually seriously under-
mined by a large number of independent unknown parameters that need
to be simultaneously identified. This results in significant ill-conditioning
which seems to be typical in inverse problems of parametric structural
identification.

3. Large number of sensors that are necessary to guarantee the uniqueness
of the result of a global identification. The reasons are the large number
of involved unknowns and low sensitivity of the global response to local
damages.

4. Unknown excitations. Response of the global structure is often influenced
by many excitations that cannot be measured and often even character-
ized accurately enough.

As a result, in monitoring of large and complex structures, data-driven (pattern-
recognition) approaches have often to be used at the expense of accuracy and
physicality of model-based SHM. However, in many practical applications only
small local substructures are crucial and need monitoring, which suggests that
model-based SHM approaches could be applied locally. Such small substructures
have much fewer structural parameters and unknown factors that need to be
identified and controlled, which makes local modeling and analysis much more
feasible in comparison to global approaches. This is the motivation behind the
research on substructuring in general and on the substructure isolation method
in particular, including this chapter.
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5.2 State-of-the-art

5.2.1 Static case

The body of research on damage detection through localized analysis is al-
ready relatively substantial. In the static case, the analysis is usually based on
global or local structural flexibilities. Park et al. [227] decompose the global
flexibility matrix into substructural flexibilities (alternatively, they can be also
obtained through local measurements) and propose localized damage indicators
based on their relative changes. In Park and Reich [228], damages are local-
ized using an invariance property of the transmission zeros of the substructural
frequency response functions. Bernal [229] analyzes changes of global flexibil-
ity matrix and localizes the damage using the damage locating vectors (DLVs).
Duan et al. extend this approach in [230] to the case of incomplete measured
degrees of freedom.

However, all these analyzes concern the static case only. Structural flexibility
is a static characteristics of the structure that may convey less information
than contained in its dynamic response. Consequently, certain damages might
be masked in static response, even if they evidently manifest themselves in
the dynamic response. Thus, several researches have pursued substructuring
methods that use dynamic structural response.

5.2.2 Dynamic case

To detect and localize damage, one can compare locally sensitive information,
such as local strain or local modal characteristics, extracted from the dynamic
structural responses measured before and after the damage occurs. For example,
Yun et al. [231] propose a method for local monitoring of stiffness modifications
using a neural network, where the input vector consists of natural frequencies
and locally measured incomplete global mode shapes; a numerical model of the
unmodified global structure is required. Bao et al. [232] use the damage basic
probability assignment (BPA) function of substructures for preliminary damage
localization. An and Ou [233] develop a model updating method that utilizes
four different cost functions and involves free vibration accelerations and local
mode shapes for detection of local damage in a truss structure.

A substructure is a local part of the global structure, and so it is not inde-
pendent of the global structure. In order to focus on the substructure only, most
of the existing approaches separate the substructure from the global structure
by partitioning the global equation of motion. The generalized interface forces
are then used for coupling both structures and need to be identified together
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with substructural parameters. In other words, the substructure is treated as
having free boundary conditions on its interface with the global structure and
the influence of the global structure is represented by the generalized interface
forces. Since these forces are unknown, they need to be identified or estimated
along with the unknown parameters of the substructure. The local identification
is performed usually in a model-based manner and requires a general parametric
numerical model of the substructure to be known beforehand.

The substructural approach has been probably first considered by Koh
et al. [234] in the context of structural identification and called a substruc-
tural identification (SSI) or a divide-and-conquer strategy. The method pro-
posed in [234] applies the extended Kalman filter with weighted global iteration
to substructures with and without overlapping members; in [235], it is devel-
oped into a progressive structural identification approach, which identifies the
global structure through identification of progressively growing substructures.
The extended Kalman filter is used also by Oreta and Tanabe [236] for local
identification of member properties in frame structures. A method for shear
structures based on cross-power spectral densities is proposed by Zhang and
Johnson in [237]. In [238], Yun and Lee employ an ARMAX model of the sub-
structure and a sequential prediction error method to locally estimate unknown
parameters that are related to damages; complete measurement of the substruc-
ture is necessary, including the interior excitations and the response in all its
DOFs. Tee et al. [239] apply the substructural strategy in the field of SHM and
propose two methods aimed at first and second order model identification and
damage assessment at the substructural level. The methods are based on the
eigensystem realization algorithm and the observer/Kalman filter; in [240], they
are combined with a model condensation approach, which allows the number of
necessary measurements to be reduced. In all these and similar methods, com-
plete measurement of interface response is necessary: the measured response is
treated as a known input to the substructure. A method that does not require
the interface responses to be measured directly is proposed by Koh et al. in [241],
where the generalized interface forces between the substructure and the global
structure are identified simultaneously with the unknown physical parameters of
the substructure using local frequency response functions. Different sets of inter-
nal response measurements are used to obtain different estimates of the interface
forces; the identification procedure amounts to minimization of the discrepancy
between them. Yang and Huang propose in [242, 243] a sequential nonlinear
least-square method to estimate unknown excitations, physical parameters of
the substructure as well as the interface forces. Lei et al. propose in [244] a re-
lated algorithm for identification of nonlinear substructural parameters; the al-
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gorithm is based on the sequential application of the extended Kalman estimator
for the nonlinear structural parameters and the least-squares indirect estimation
of the unmeasured interface forces. Both methods require only a limited number
of output measurements, and they can trace damages changing with time. In
[245], Yuen and Katafygiotis present an output-only bayesian frequency-domain
approach for substructure identification and monitoring in linear multi degree
of freedom (MDOF) systems. Zhang et al. [246] introduce a control system to
identify storey parameters in a shear structure using cross power spectral den-
sity (CPSD). A method based on multi-feature genetic algorithm was used by
Trinh and Koh [247] to estimate substructural mass, damping and stiffness pa-
rameters. Xing and Mita [248] confine each substructure of a multi-storey shear
building to a few DOFs only and use overlapping substructures; they apply di-
rectly the ARMAX method for local identification. Wang et al. [249] employ
the concept of the quasi static displacement vector to simplify the generalized
interface forces, and use a method based on a genetic algorithm to identify the
substructure.

5.2.3 Substructure separation methods

All the methods mentioned above can be collectively called substructure sepa-
ration methods, since they rather separate than isolate the substructure from the
global structure: although separated, the substructure and the global structure
remain coupled to each other via the unknown interface forces. Consequently,
all the discussed identification methods need to account for the unknown inter-
face forces besides the unknown substructural parameters. However, forces and
structural parameters are variables of very different characteristics, and thus all
these identification methods, although effective, are not standard and have to
be specifically tailored to be used at the substructural level. As a result, none of
the standard and widely-researched model updating or health monitoring meth-
ods can be directly applied to the separated substructure, which is an inherent
deficiency common to all approaches based on substructure separation.

5.3 Overview of the isolation method

5.3.1 Two-stage monitoring

The substructure isolation method has been proposed to overcome the draw-
backs of the substructure separation approaches [46–53]. The core idea of the
isolation is different: instead of separating the substructure and then identifying
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its parameters together with the unknown interface forces, the method splits
the task of local identification into two conceptually distinct stages that are
performed separately:

1. Virtual isolation of the substructure. This is essentially a signal processing
stage, in which experimentally measured responses of the substructure are
numerically processed in order to eliminate the outside influences of the
global structure. The result is the response of the substructure that would
be measured, if the substructure was actually isolated from the global
structure by physically supporting all the degrees of freedom (DOFs) on
its interface. The whole procedure is numerical and not physical, and
hence the modeled supports in the interface DOFs are virtual in nature.

2. Local analysis and identification of the isolated substructure is performed
in the second stage. The response computed in the first stage is the local
response of the isolated substructure, which has the same physical pa-
rameters as the real substructure, but it is independent from the external
influences of the global structure. As a result, any of the existing, well-
researched methods aimed originally at global SHM can be used together
with the computed response and thus effectively at the substructural level.

Such an approach places the substructure isolation method in a broader land-
scape of methods that use structural modifications, either physical or virtual,
to increase the sensitivity of the response to selected structural parameters, see
Dems and Mróz [176, 177], Hou et al. [250], Nalitolela et al. [251] or Bojczuk
and Mróz [252].

Notice that there are no unknown interface forces to be accounted for in the
second stage. This is a significant advantage of isolation as compared to sepa-
ration, which allows any of the standard model updating or health monitoring
methods to be used locally. Moreover, response of the isolated substructure is
computed directly using measured responses of the substructure, so that no
parametric numerical model is required at the isolation stage. The disadvantage
of the isolation approach is that it requires the substructure to be linear and all
interface DOFs to be instrumented.

5.3.2 Excitations, sensors and measured responses

The response of the virtually supported substructure to an internal testing
excitation ftest(t) is computed in the first stage by processing four types of re-
sponses of the global structure. These responses are generated experimentally
using two different types of excitations and measured using two groups of sen-
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sors. The purpose of measurements is to gather enough information about local
dynamics of the substructure (internal and interface) when excited either inter-
nally or from outside through the interface DOFs. The placement of excitations
and sensors is illustrated in Fig. 5.1.

basic sensor

basic
excitation

constraining
sensors

constraining
excitations

basic sensor

basic

excitation

Figure 5.1. Excitations and sensors required for virtual isolation of a substructure: (left) the
real substructure as a part of a larger global structure; (right) the virtually isolated substruc-
ture.

5.3.2.1 Excitations

The required excitations are divided into
1. Basic excitation, which is the external excitation ftest(t) that is applied

inside the considered substructure.
2. Constraining excitations, denoted by qi(t), which are applied in the DOFs

of the interface or in the outside structure. Their total number must not
be smaller than the number of the interface DOFs.
Each constraining excitation qi(t) results in a vector qI

i(t) of the gener-
alized interface forces that excite the substructure. For the considered
substructure, the excitation qi(t) is thus equivalent to the vector qI

i(t)
applied in the interface DOFs of the substructure treated as having all
free boundary conditions on the interface. In other words, the response
of the substructure (with all free boundary conditions on the interface)
to the interface excitation qI

i(t) is exactly the same as the response of the
actual substructure to the constraining excitation qi(t). Notice that the
relation between the constraining excitation and the equivalent interface
excitation might not be linear, as the outside structure is not required to
be linear.



132 5. Virtual isolation of substructures for local health monitoring

The excitations (basic and constraining) need not be measured for the purpose
of the isolation stage, even if the identification or monitoring methods applied
in the subsequent stage of local analysis may require certain characteristics of
the basic excitation to be known.

Basically, the constraining excitations can be of any type. However, their
character and placement influence the conditioning of the isolation process, and
thus the quality of the computed response of the isolated substructure. For a re-
liable isolation, the responses should provide full information about the internal
dynamics of the substructure as excited through its interface. The following
practical hints can be considered:

• In order to ensure a high signal-to-noise ratio, the constraining excitations
should be placed near the interface rather than far away from it.

• The constraining excitations should be applied in different points and in
various directions. In this way, there are more chances that the equivalent
interface excitations and the measured responses are independent.

• The constraining excitations should not be very soft or too hard. A soft
excitation may excite only low frequencies, while a hard excitation may
result in only high-frequency response. In both cases, information in a cer-
tain frequency range would be lost.

5.3.2.2 Sensors

The responses of the global structure to the above excitations are measured
by the two following groups of sensors:

1. Basic sensors, which are linear sensors placed inside the substructure.

2. Constraining sensors, which are linear sensors that need to be placed in
all DOFs of the substructural interface.

5.3.2.3 Measured responses

Altogether, there are two types of excitations and two groups of sensors, so
four different types of response are measured, which are denoted as summarized
in Table 5.1. Notice that there is a single basic excitation, so that uL(t) and
aL(t) are vectors, while Bup(t) and Bap(t) are matrices, because there are several
constraining excitations.
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Table 5.1. Responses of the global structure used for virtual isolation of its substructure.

Basic excitation ftest(t) Constraining excitations
Basic sensors uL(t) Bup(t)

Constraining sensors aL(t) Bap(t)

5.3.3 Stage I: substructure isolation

The purpose of the isolation stage is to compute the response u(t) to the
basic excitation ftest(t) that would be measured by the basic sensors, if the
substructure was physically isolated from the rest of the global structure.

The isolation process is numerical, and the supports in the interface DOFs
are thus only virtual and not physical. They are modeled using the general
methodology of the VDM, in which their reaction forces are replaced with ini-
tially unknown pseudo loads. This can be summarized as follows:

1. It is noted that there is an effective equivalence between a physical sup-
port and its reaction force. Physical supports represent kinematic bound-
ary condition, which affect the supported substructure by means of their
reaction forces. Thus, if the reaction forces are known, the supports can
be equivalently modeled using load boundary conditions defined by the
known reaction forces.

2. If the supported substructure is linear, there is a linear relation (5.5)
between the interface forces and the response. Equation (5.5) is the coun-
terpart of the VDM formula (3.1).

3. The reaction forces, which would be exerted by the supports, if they
were physically applied, are unknown. However, the responses in the sup-
ported DOFs must vanish, which is expressed in the form of the kine-
matic compatibility condition (5.6a). Together with (5.5a), this condition
yields (5.6b), which can be solved to obtain the proper reaction forces.
The kinematic compatibility condition (5.6a) is one of the many special
forms of the general VDM formula (3.3).

4. Given the reaction forces, the effect of the corresponding load boundary
conditions on the response can be computed using (5.5b).

Basically, the above process is an analogue of the method of forces applied
in dynamics. According to the third point, structural response in the to-be-
supported DOFs must be measured, which explains why the constraining sen-
sors have to be placed in all the DOFs of the substructural interface. Technically
speaking, these sensors implement the virtual interface supports. The whole pro-
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cess is equivalent to modeling an isolated substructure, which is an independent
virtual structure with the same physical parameters as the real substructure, but
isolated from the global structure with virtual supports placed on the interface
and modeled using proper load boundary conditions.

5.3.4 Stage II: local identification

The isolated substructure has the same physical parameters as the real sub-
structure, but it constitutes a (virtual) system that is independent from the
outside structure. The response u(t) computed in the first stage is thus a lo-
cal response of the isolated substructure to the basic excitation ftest(t), and
it does not contain any outside influences. Such a local response can be fur-
ther processed to obtain certain local characteristics of the substructure, which
can include its local natural frequencies and local mode shapes. As a result,
local damage identification can be performed by any of the standard and well-
investigated methods that have been originally aimed at global identification.
In this way, modeling of the global structure is avoided, which can significantly
decrease the monitoring costs in real applications.

In the numerical and experimental examples described in this chapter, the
substructure is identified by updating selected parameters of its local finite el-
ement model. The updating process is based on minimization of an objective
function that is formulated using either time-domain or frequency-domain re-
sponses.

5.3.4.1 Time-domain identification

Provided the basic excitation is known, local damage of the substructure
is identified via a time-domain comparison of the response u(t) of the isolated
substructure with the response uFE(t,µ) that is computed using a finite element
model of the isolated substructure and which depends on the vector µ of un-
known structural parameters that represent the damage. The vector µ is treated
as an optimization variable, so that the damage is identified by minimizing the
following objective function:

F (µ) :=
∥u− uFE(µ)∥2

∥u∥2
. (5.1)

which is the normalized least-square distance between both responses.
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5.3.4.2 Frequency-domain identification

If the basic excitation is a short-time quasi impulsive load, then the re-
sponse u(t) computed in the isolation process is a free response of the isolated
substructure. Such a response can be used to identify the local modal model of
the isolated substructure, including its natural frequencies ωi and mode shapes
ϕi, e.g., by the eigensystem realization algorithm [223]. A local damage of the
substructure is then identified by minimizing the following discrepancy between
the identified modes and the modes computed using a local finite element model
of the isolated substructure:

F (µ) :=
∑
i

∣∣∣∣ωi − ωFE
i (µ)

ωi

∣∣∣∣2 + κ
∑
i

∣∣1−MAC
(
ϕi,ϕ

FE
i (µ)

)∣∣2, (5.2)

where ωFE
i (µ) and ϕFE

i (µ) are respectively the ith natural frequency and mode
shape of the local FE model of the isolated substructure, and κ is a weighting
factor of the mode shape errors that are computed using the modal assurance
criterion (MAC) [253].

5.3.5 Substructure isolation and load identification

Subsection 3.1.4 emphasizes the close relation between the VDM and the
inverse problem of load identification. In this chapter, the methodology of the
VDM is used for modeling of virtual supports in the purpose of isolation of
substructures. It is noted that physical supports influence the structure through
their reaction forces. Accordingly, virtual supports are modeled in terms of cer-
tain pseudo loads that are placed in the to-be-supported DOFs in order to model
the reaction forces of the intended supports. This kind of formulation relies on
load identification in a very direct way: the proper time histories of the pseudo
loads are found by solving a typical load identification problem, that is by fitting
the modeled response of the interface to (the negative of) its measured response,
compare (5.6b) to (2.25).

5.4 Isolation in time domain

The substructure is virtually isolated by placing virtual supports in all DOFs
of its interface with the rest part of the global structure. The supports are mod-
eled by the pseudo load vector p0(t) that would equal the generalized support
reaction forces, if the substructure was physically supported. The virtual sup-
ports implement fixed boundary conditions on the interface, and thus p0(t)
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models the corresponding generalized boundary forces and defines the equiva-
lent load boundary conditions.

The pseudo load vector is represented in terms of (a convolution of) the
generalized interface forces qI

i(t) that correspond to the ith constraining exci-
tation qi(t),

p0(t) =
∑
i

t∫
0

qI
i(t− τ)pi(τ) dτ, (5.3)

where i indexes the constraining excitations and pi(t) are certain unknown func-
tions. Equation (5.3) can be stated in the operator notation as

p0 = QIp, (5.4)

where QI is the corresponding matrix convolution operator that, unlike Q in
Subsections 2.2.4.1 or 4.2.1.4, is not diagonal.

The considered substructure is assumed to be linear. The response of the
virtually supported substructure to the basic excitation ftest(t) is the sum of
the response of the actual substructure and the effects of the pseudo loads that
model the supports. The former response is directly measured (aL(t) and uL(t)),
while the latter, thanks to (5.3), can be expressed in terms of the measured re-
sponses to the constraining excitations. Thus, the response of the constraining
and basic sensors in the virtually supported substructure are respectively mod-
eled as

a(t) = aL(t) + (Bapp) (t), (5.5a)

u(t) = uL(t) + (Bupp) (t), (5.5b)

where Bap and Bup are matrix convolution operators with the experimentally
measured Bap(t) and Bup(t), see Table 5.1. The interface responses a(t) van-
ish in a properly isolated substructure, which yields the following kinematic
compatibility condition:

a(t) = 0, (5.6a)

and together with (5.5a) leads to

(Bapp) (t) = −aL(t). (5.6b)

Equations (5.5b) and (5.6b) yield together the formula

u(t) = uL(t)−
(
Bup [Bap]+ aL

)
(t), (5.7)
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which expresses the response of the isolated substructure to the basic excitation
in terms of the measured responses of the actual substructure. Notice that the
operator QI does not appear in (5.7), hence neither the constraining excitations
qi(t) nor the equivalent interface excitations qI

i(t) need to be known. However,
the character and placement of the constraining excitations affects the properties
of the operator Bap, which is inverted in (5.7), and thus the accuracy of the
isolation. Therefore, constraining excitations should be chosen with care: a few
practical hints have been already provided in Subsection 5.3.2.1. In practice,
quasi impulsive excitations, obtained for example with a modal hammer, tend
to provide good results.

5.4.1 Isolation with other types of virtual supports

Up to now, the constraining sensors have been all assumed to measure dis-
placement, velocity or acceleration in interface DOFs. Their responses are made
vanishing in the isolated substructure, which yields fixed boundary conditions
on the interface and, consequently, a kind of virtual supports that can be termed
“virtual fixed supports”.

In fact, other types of boundary conditions and virtual supports can be also
used, depending on the type of the substructure and sensors placed on its inter-
face. In the following, isolation of a 2D beam is used as an illustrative example.
Figure 5.2 shows the structure, the substructure to be isolated and the physical
quantities of interest at the interface: the internal shear force aT(t), the internal
bending moment aM(t), the vertical displacement ay(t), the rotation aθ(t) and
the longitudinal strain aε(t), which is measured on one of the beam faces. For
the moment, the axial displacement and axial force are ignored for the sake of
simplicity: in their absence, the strain aε(t) (measured off the neutral axis) is
proportional to the bending moment aM(t), but much easier to measure. The
mentioned quantities can be used to formulate four different types of boundary
conditions,

a.

{
0 = ay(t),

0 = aθ(t),
b.

{
0 = ay(t),

0 = aε(t),
c.

{
0 = aT(t),

0 = aθ(t),
d.

{
0 = aT(t),

0 = aε(t),
(5.8)

where the strain is used as a substitute of the internal bending moment. Equa-
tions (5.8) define four kinds of nodal virtual supports that can be applied in the
interface to isolate the substructure, see Fig. 5.3.

In practice, it is usually impossible to place physical supports or to apply
in real time proper excitations on the interface to make its response satisfy one
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Figure 5.2. A substructure of a 2D beam (axial displacements ignored).

a. b.

c. d.

Figure 5.3. The four types of nodal virtual supports defined in (5.8) (axial displacements
ignored).

of the four conditions listed in (5.8). However, as shown above, a number of
nonzero interface responses can be linearly convolved to zero, so that the result-
ing interface response satisfies the desired boundary conditions. As a result, the
type of the virtual support is determined by the types of the interface sensors.
For instance, if ay(t) and aθ(t) are measured, then the virtual fixed support,
(5.8)a and Fig. 5.3a, can be constructed by a linear combination of the mea-
sured responses. Or, if the responses ay(t) and aε(t) are measured, the virtual
pinned support, (5.8)b and Fig. 5.3b, can be constructed. In real applications,
the shear force aT(t) is hard to measure, so that the other two kinds of virtual
supports (marked c. and d.) will be usually not used. As before, the reaction
forces of the virtual supports are modeled with the equivalent vector p0(t) of
pseudo loads. The substructure and all the sensors are linear, so that (5.3) to
(5.6b) hold. Equation (5.7) can be thus used to compute the response of the iso-
lated substructure to the basic excitation, which satisfies the intended boundary
conditions as determined by the type of the interface sensors.

In the above example, axial displacement and axial force are ignored. If they
are to be considered, the longitudinal strain measured off the neutral axis is
no longer a direct substitute of the internal bending moment. In such a case,
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two strain sensors can be placed on the opposite faces of the beam in the same
distance from its neutral axis: the axial stress and the bending moment will
be then proportional to the sum and to the difference of their measurements
respectively.

5.4.2 Time discretization and numerical stability

For theoretical clarity, all the responses in this section have been assumed
so far to be continuous. However, in a real application only discrete data can be
measured, and so all the responses are given in practice in the form of vectors
that are sampled in discrete time points every ∆t. Therefore, the key formula
(5.7) has to be discretized into:

u = uL −Bup [Bap]+ aL, (5.9)

where the vectors u, uL and aL collect in all time instances the respective
discrete responses of all involved sensors, and the matrices Bup and Bap with
proper ordering of the data take the forms of large block matrices with Toeplitz
blocks. As an example, Fig. 5.20 left illustrates the structure of the matrix Bap

obtained in the experimental study described in Section 5.7. Matrices of this kind
are usually extremely ill-conditioned [109, 111], and hence the superscript +
denotes in (5.9) the regularized pseudoinverse, which for smaller problems can be
computed directly via the truncated singular value decomposition [67, 111, 128].
However, the term [Bap]+ aL is (the negative of) the regularized solution of the
following discretized version of (5.6b):

Bapp = −aL, (5.10)

and it can be also computed as a whole using the Tikhonov regularization or,
which is more convenient for large problems, an iterative regularization method
such as the conjugate gradient least squares, see [67, 111, 128] and the remarks
in Subsection 4.2.3.3.

In all regularization approaches, it is important to properly choose the reg-
ularization parameter, which can be, depending on the specific procedure, the
number of the retained singular values, the Tikhonov weighting parameter, the
number of iterations, etc. The heuristic commonly used for this purpose is the
L-curve criterion [67, 111, 135]. However, note that in (5.9) the regularized so-
lution is multiplied by Bup, which is a matrix of a similar structure to Bap.
Thus, Bup acts as a smoothing operator that alleviates the effects of a potential
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under-regularization. As a result, the computed discrete response u of the iso-
lated substructure turns out in practice to be stable for a wide range of values
of the regularization parameter, see, e.g., Figs. 5.11 and 5.12.

5.5 Isolation in frequency domain

In the previous section, the response of the isolated substructure is con-
structed in time domain. It involves solving a very large and extremely ill-
conditioned matrix equation (5.10), which originates from a discretization of
a system of Volterra integral equations of the first kind (5.6b) and has the
dimensions proportional to the number of the considered time steps Nt. Solu-
tion of such a system is difficult and time-consuming; the size of the system
and thus the manageable length of the measurement time interval is signifi-
cantly limited. Similar as in Section 4.3, a frequency-domain formulation can
be proposed, which significantly decreases the computational effort: the method
performs much faster, even if considerably longer measurement time intervals
are used.

The naming convention for the responses is the same as in Table 5.1, with
the exception that the responses are now complex amplitudes that depend on
the frequency ω. The frequency-domain counterparts of (5.5) have the form of
the following matrix equations:

a(ω) = aL(ω) +Bap(ω)p(ω), (5.11a)

u(ω) = uL(ω) +Bup(ω)p(ω), (5.11b)

where Bap(ω) and Bap(ω) are complex matrices. In contrast to (5.5), which
constitute a large system of Volterra integral equations, (5.11) yield for each ω
a different discrete linear system of a moderate size.

In a properly isolated substructure, the response of all the interface sensors
vanish, which yields the kinematic compatibility condition

a(ω) = 0, (5.12a)

and thus the following frequency-domain counterpart of (5.6b):

Bap(ω)p(ω) = −aL(ω) (5.12b)

is a discrete matrix equation of a moderate size (the number of unknowns equals
the number of the to-be-supported interface DOFs or constraining sensors) that
needs to be solved separately for each ω of interest. The solution to (5.12b) can
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be represented using the regularized pseudoinverse as − [Bap(ω)]+ aL(ω), which
substituted into (5.11b) yields

u(ω) = uL(ω)−Bup(ω) [Bap(ω)]+ aL(ω). (5.13)

In practice, even repeated solutions of (5.12b), each for a different ω, are consid-
erably faster than a single solution of the integral equation (5.6b). The process is
even less time-consuming, if only a limited number of frequencies ω is of interest
instead of the full spectrum.

5.5.1 Isolation in time domain vs. isolation in frequency domain

Equations (5.12b) and (5.13) are frequency-domain counterparts of the time-
domain (5.6b) and (5.7). The most important differences between the two for-
mulations can be summarized as follows:

1. The frequency-domain (5.12b) is a separate matrix equation for each fre-
quency line ω, and since not always all frequencies are of interest, it might
be solved only a very limited number of times. The time-domain (5.6b)
is a single system of Volterra integral equations that needs to be solved
once and for all.

2. The frequency-domain (5.12b) is of a significantly smaller size than any
discretized version of (5.6b). The former system has the dimensions of
number of interface sensors × number of constraining excitations, while
in the latter system both dimensions are Nt times larger, where Nt is the
number of the time steps.

3. In practice, the time-domain system is always extremely ill-conditioned.
The frequency-domain system is well-conditioned for most of the frequen-
cies ω, provided the constraining excitations are properly placed and ap-
plied, see Subsection 5.3.2.1.

4. In an application, (a discretized version of) the time-domain system is
constructed directly using measured time-domain responses, while the
frequency-domain system needs an initial pre-processing of the measure-
ment data (windowing, averaging, discrete Fourier transform, etc.), see
Subsection 5.5.2.

Only the last of the above points mentions an advantage of the time-domain for-
mulation; the former three points list clear advantages of the frequency-domain
approach.
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5.5.2 FFT of the time-domain responses

In real applications the measured time-domain response is discrete, so the
frequency-domain formulation requires the fast Fourier transform to be em-
ployed to compute the frequency-domain responses. If the time-domain signal
is of a finite length and does not tend to zero in the integration time, spectral
leakage is inevitable. As demonstrated in the numerical example below (Sub-
section 5.6.2), it can significantly impair the accuracy of the frequency-domain
response computed using (5.13). To minimize the adverse effect of the spec-
tral leakage, the windowing process is usually employed before performing the
FFT. Here, three windowing functions are tested: we(t, η) (exponential window),
wh(t) (hanning window) and, for comparison purposes, w1(t) (rectangular win-
dow, that is no windowing),

we(t, η) :=

{
e−ηt for 0 ≤ t ≤ T,
0 elsewhere,

(5.14a)

wh(t) :=

{
1
2 + 1

2 cos(
πt
T ) for 0 ≤ t ≤ T,

0 elsewhere.
(5.14b)

w1(t) :=

{
1 for 0 ≤ t ≤ T,
0 elsewhere.

(5.14c)

A useful feature of the exponential window can be considered in order to
support its feasibility: compare the free response of an n-DOF structure in
t ∈ [0, T ] with the same response after exponential windowing,

u(t) =
∑
i

Aiϕie−ωiξit sin(ωdit+ θi), (5.15a)

u(t)we(t, η) =
∑
i

Aiϕie−ωi(ξi+η/ωi)t sin(ωdit+ θi), (5.15b)

where ϕi is the shape of the ith structural mode, Ai denotes the amplitude, ωi

is the ith natural frequency, ξi is the corresponding damping ratio, and ωdi =
ωi(1 − ξ2i )0.5. The exponential window increases the damping ratio of the free
response by η/ωi, but does not change its frequency content, which is unlike
other windows including the hanning window.

5.6 Numerical examples

Two simple mass-spring systems are used for initial verification of the isola-
tion method and to illustrate the principles of its application. Time-domain as
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well as frequency-domain isolation with the three considered windowing func-
tions are used. The influence of the regularization level on the accuracy of the
results is tested.

5.6.1 2-DOF mass-spring system

This example considers an elementary 2-DOF mass-spring system shown in
Fig. 5.4(left). The value of each lumped mass is m; the stiffness and the damping
of each spring are k and c respectively. The system matrices are thus

M :=

[
m 0
0 m

]
, C :=

[
2c −c
−c c

]
, K :=

[
2k −k
−k k

]
. (5.16)

Figure 5.4. Numerical example of the 2-DOF mass-spring system: (left) the global system and
(right) its isolated substructure.

Let the substructure consist of the second mass and the spring, as shown
in Fig. 5.4(right). There is a single DOF only (the first mass) on the interface,
thus a single constraining excitation is necessary, which has to be applied to the
first mass. In frequency domain, the constraining excitation is unit harmonic.
If the basic excitation is also unit harmonic, then the basic and constraining
displacement responses are the respective entries of system frequency response
matrix H(ω), see Table 5.1,

H(ω) =

[
Bap(ω) aL(ω)
Bup(ω) uL(ω)

]
=

1

A

[
k + icω −mω2 k + icω

k + icω 2k + 2icω −mω2

]
, (5.17)

where A = (k2 + 2ickω − (c2 + 3km)ω2 − 3icmω3 +m2ω4)−1. Equation (5.13)
can be now used to obtain the response of the isolated substructure to the basic
excitation,

u(ω) =
1

k + icω −mω2
, (5.18)

which is obviously the same as the frequency response function of the single DOF
system shown in Fig. 5.4(right). The substructure is thus successfully isolated.
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Table 5.2. Numerical example of the 6-DOF massspring system: naming convention.

Basic excitation f6 Constraining excitation f3
Basic sensor x5 uL(ω), uL(t) Bup(ω), Bup(t)

Constraining sensor x3 aL(ω), aL(t) Bap(ω), Bap(t)

5.6.2 6-DOF mass-spring system

5.6.2.1 The structure, excitations and sensors

Consider a 6-DOF mass-spring system shown in Fig. 5.5(left). The stiffness
of each spring is k = 2 kN/m and all the lumped masses are m = 4 kg. The
proportional damping model is used, and the 1st and 2nd order damping ratios
are 1%. The substructure to be isolated and locally monitored consists of the
4th, 5th and 6th mass, as shown in Fig. 5.5(right), while the interface DOF
that should be fixed is the 3rd mass. These data are used to obtain FE models
(mass, damping and stiffness matrices) of the global system and of the isolated
substructure.

Figure 5.5. Numerical example of the 6-DOF mass-spring system: (left) the global system and
(right) its isolated substructure.

Assume that two acceleration sensors, denoted by x3 and x5, are placed
respectively on the 3rd and the 5th mass, and that two excitations, denoted
f3 and f6, can be applied respectively to the 3rd and the 6th mass. In the
following, the FE model of the global system is used in frequency domain and
in time domain to compute the corresponding four responses, which are denoted
in the plots by xi–fj for the purpose of notational clarity. They are treated as
measured responses, and the FE model of the global system is not used anymore.
These responses play the role of the four responses used in (5.6b) and (5.13) to
construct the response of the isolated substructure, see the naming convention
in Table 5.2. The accuracy of the constructed response is verified using the FE
model of the isolated substructure, by comparison with the directly simulated
response of the 5th mass to the excitation of the 6th mass provided that the 3rd

mass is fixed.
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5.6.2.2 Isolation using exact frequency-domain responses

Figure 5.6(left) plots the exact acceleration frequency response functions
(accelerance FRFs) of the global system, as simulated using its FE model. They
are directly used in (5.13) to construct the accelerance FRF of the isolated
substructure,

u(ω) = uL(ω)− Bup(ω)

Bap(ω)
aL(ω). (5.19)

Figure 5.6(right) compares the result to the accurate accelerance FRF computed
using the FE model of the isolated substructure. Amplitudes of both responses
are the same (the discrepancies are of the order of the accuracy of the floating
point arithmetic), which confirms that the considered substructure can be suc-
cessfully isolated in frequency domain by means of the exact accelerance FRFs.
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Figure 5.6. Numerical example of the 6-DOF mass-spring system: (left) amplitudes of the
accelerance FRFs of the global system; (right) constructed and actual accelerance FRFs of the
isolated substructure.

5.6.2.3 Isolation using noisy time-domain responses

In order to emulate a real application with time-domain excitations, a simu-
lated hammer excitation is applied to the 3rd and 6th mass, see the left-hand side
of Fig. 5.7. The sampling frequency is 200 Hz and the time interval is T = 5 s,
which results in a total of 1000 time steps. In order to simulate the responses of
the global system, the Newmark integration scheme [145–148] with the standard
parameters γ = 1/2 and β = 1/4 is used to integrate the equation of motion of
its FE model, see the right-hand side plot. In the same way, the time-domain
responses of the isolated substructure are directly computed based on its FE
model and used in the following for comparison purposes.
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Figure 5.7. Numerical example of the 6-DOF mass-spring system: (left) simulated hammer
excitation; (right) simulated responses of the global structure.

First, in the following, the simulated responses are used to construct the
accelerance FRF of the isolated substructure using the windowing functions
discussed in Subsection 5.5.2. By comparison with the FRF obtained using the
directly simulated responses of the isolated substructure, only the exponential
window is selected for further computations. Then, all the generated responses
are contaminated with uncorrelated Gaussian noise at 5% rms level and used
again in frequency- and time-domain isolation. The time-domain responses of
the isolated substructure obtained this way are used with the ERA [223] to
identify basic modal parameters of the substructure (natural frequencies and
damping ratios). The relative accuracy of the results (time-histories of the re-
sponses and the identified modal parameters) is compared in terms of the decay
rate of the FFT window and in terms of the regularization level (CGLS itera-
tions).

FFT and windowing. All the three windowing functions mentioned in Subsec-
tion 5.5.2 (exponential window, hanning window and no windowing) are tested.
The exponential window depends on the window decay rate η. Here, it is spec-
ified through the attenuation ratio r = we(T, η) at the end of time interval T ;
both quantities are related to each other by

r = exp(−ηT ) = e−ηT , η = − ln r

T
. (5.20)

Three different values of the attenuation ratio r are initially tested: 10−1, 10−2

and 10−3. Before performing the FFT, in order to increase its frequency resolu-
tion, several zeros are added in front of the windowed hammer excitation and
the responses (the time interval is increased tenfold and filled with zeros at the
beginning).
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The results of the FFT are used to construct the frequency-domain response
of the isolated substructure by (5.13); this response is divided by the FFT of
the simulated hammer excitation to obtain the constructed FRF of the isolated
substructure. The FEM-based response of the substructure is processed in the
same way, and using the same windowing functions, to compute the FEM-
based FRF of the isolated substructure for verification purposes. Figure 5.8
(top left, top right and bottom left) compares the amplitudes of the constructed
and FEM-based FRFs. Only the exponential window (top left) is able to yield
consistent results. Even if the hanning window (top right) yields almost the
same positions of the peaks, the amplitudes deviate significantly. The destructive
effect of spectral leakage is clearly evident in the case of no windowing (bottom
left).
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Figure 5.8. Numerical example of the 6-DOF mass-spring system. Comparison of the con-
structed and FEM-based accelerance FRFs of the isolated substructure: (top left) exponential
window, r = 10−2; (top right) hanning window; (bottom left) no windowing. Exponential
window, spectral leakage and effective damping: (bottom right) accelerance FRF constructed
using exponential windows with different decay rates.
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As mentioned in Subsection 5.5.2, the exponential window increases the ef-
fective system damping. Figure 5.8 (bottom right) compares the amplitudes of
the FRFs constructed with different values of the window attenuation ratio. For
r = 10−1, there are obvious oscillations, which suggests that the window decay
rate is not large enough to reduce the spectral leakage. On the other hand, too
small r introduces too much damping into the system. As a result, a compromise
value should be chosen.

Isolation in frequency domain. The inverse FFT is applied to the response
of the isolated substructure constructed using exponential windows with the
attenuation ratio r varying in the range from 1 (no windowing) to 10−4. After
the first 50 ms of the constructed response is discarded, see Fig. 5.7(left), the
remaining part is the free response of the isolated substructure and can be thus
used with the ERA to retrieve modal parameters of the substructure. The raw
constructed response is windowed, which means that either

1. The ERA is applied directly to the windowed response. In order to ac-
count for the damping effect of the exponential window, the identified
damping ratios are corrected by η/ω, see Subsection 5.5.2 and (5.20). Or

2. The response is first unwindowed (divided by the exponential window)
and then used with the ERA. The identified damping ratios do not need
to be corrected.

In both cases, the accuracy of the identification results depends on the particu-
lar value of the ratio r used in computations. Figure 5.9 plots the relative root
mean square (RMS) errors of the identified eigenvalues, damping ratios and the
time-histories of the constructed responses in dependence on r. The first case
(windowed response) is shown in the left-hand side figure; the right-hand side
figure plots the second case (unwindowed responses). An example comparison
of a time-domain response of the isolated substructure constructed using a com-
promise value of r = 10−2 with the actual time-domain response (both of which
are windowed and unwindowed using the same exponential window) is shown
in Fig. 5.10.

Notice that the results are clearly unstable for too small attenuation of the
windowing function (r > 10−1), which has to be attributed to the insufficiently
reduced spectral leakage. On the other hand, too much damping (too small r)
results in pronounced oscillations at the end of the time interval that occur in
the constructed unwindowed response; they can be checked to increase dramat-
ically with decreasing attenuation ratio r. Between r = 10−2 and r = 10−3 the
oscillations lead to serious numerical instability, which cause the regularization
procedures that are in-built into the used software packages to intervene. This
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Figure 5.9. Numerical example of the 6-DOF mass-spring system. Isolation in frequency do-
main. Relative root mean square errors of identified natural frequencies, damping ratios and
time-domain responses in dependence on the attenuation ratio r of the exponential window.
Identification and comparison performed using: (left) windowed responses; (right) unwindowed
responses. Notice the effect of the undamped oscillations for r < 10−2 and the related inter-
vention of the regularization procedures in-built into the inverse FFT routine.
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Figure 5.10. Numerical example of the 6-DOF mass-spring system. A comparison of the win-
dowed and unwindowed time-domain responses of the isolated substructure (isolation in fre-
quency domain, exponential FFT window with the attenuation ratio r = 10−2).

can be seen in Fig. 5.9(right): after initial spikes, for r < 10−3 the constructed
unwindowed response stays exactly the same, irrespective of the attenuation
ratio and with a high constant level of the oscillations. The destructive effect
of the oscillations can be partially countered by applying the ERA to the win-
dowed responses, which increases the relative weight of the initial part of the
constructed response.

Isolation in time domain. The time-domain responses x3 and x5 of the global
system to the constraining excitation f3 are used to build the lower triangu-
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lar Toeplitz matrices Bap and Bup, which are the discretized versions of the
corresponding Volterra convolution operators, see Subsection 5.4.2. The itera-
tive algorithm of CGLS is used to solve (5.10); the result is substituted into
(5.9) to obtain the time-domain response of the isolated substructure. The first
50 ms of the constructed response is discarded, and the remaining part is used
with the ERA to retrieve the modal parameters of the substructure. Due to
ill-conditioning of (5.9), the constructed time-domain responses have small os-
cillations near the end of the time interval. Although similar oscillations appear
also in the responses constructed using frequency-domain isolation, they are
masked there by the exponential window, see Fig. 5.10, while in time-domain
isolation there is no such a natural attenuating window. Thus, besides the full-
length constructed responses, their first halves are also used with the ERA.
The accuracy of the results depends on the regularization level of the computed
solution to (5.10), that is on the number of CGLS iterations used to solve it.
Figure 5.11 plots the relative RMS errors of identification results in dependence
on the number of CGLS iterations; the results computed using full- and half-
length responses are distinguished by using thick and thin lines respectively. An
example comparison of time-domain responses of the isolated substructure (con-
structed using 100, 200 and 400 CGLS iterations) with the actual time-domain
response is shown in Fig. 5.12.
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Figure 5.11. Numerical example of the 6-DOF mass-spring system. Isolation in time domain.
Relative root mean square errors of identified natural frequencies, damping ratios and time-
domain responses in dependence on the number of CGLS iterations. The results obtained with
full-length responses are plotted using thick lines; thin lines denote the results obtained for
half-length responses.
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Figure 5.12. Numerical example of the 6-DOF mass-spring system. A comparison of the time-
domain responses of the isolated substructure (isolation in time domain; 100, 200 and 400
CGLS iterations).

The results attest the stability of the CGLS-based isolation in time domain.
The results are unstable only if the solution to (5.9) is overregularized, that
is if too few CGLS iterations are used. Then, after passing a certain threshold
number of iterations, the constructed response and the identified modal param-
eters remain stable irrespective of the number of iterations used. In general,
half-length responses yield considerably better results, at least in terms of the
time-histories of the responses and the modal damping ratios. On the other
hand, the natural frequencies obtained with full-length responses are more ac-
curate, but the difference is negligible in practice (0.2% vs. 0.5% relative error).

Practical conclusions. The results allow the following practical conclusions
to be drawn:
• The numerical example confirms the effectiveness of the substructure iso-

lation method. The constructed responses of the virtually isolated sub-
structures are accurate and stable enough to be used for local monitoring:
at simulated 5% rms error of the time-domain responses of the global
structure, the relative errors of substructural identification can be kept
one order of magnitude lower for natural frequencies and at the same or-
der of magnitude for modal damping ratios and the time-histories of the
responses.

• Isolation in frequency domain is much quicker than in time domain. How-
ever, the exponential FFT window with a proper decay rate must be used
for stable results. The accuracy can strongly depend on the decay rate
and the window of proper decay rates can be relatively narrow: the at-
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tenuation must be large enough to prevent spectral leakage and small
enough to prevent numerical inaccuracies in the inverse FFT routine.

• Isolation in time domain is relatively time-consuming: the cost of a sin-
gle step of CGLS iteration (two FFT-based matrix–vector products) is
comparable to the cost of a full frequency-domain isolation. However, af-
ter passing a relatively small threshold number of iterations, the results
remain stable irrespectively of the actual number of iterations.

5.7 Experimental verification

This section verifies the substructure isolation method in an experimental
example. Time-domain and frequency-domain isolation is respectively used to
construct the time-domain responses of the isolated substructure to a windowed
sine pulse and to an impact excitation by a modal hammer. These responses are
used to identify a local damage of the substructure. Structural parameters of a
local FE model of the isolated substructure are updated based on fitting either
the time-histories of the responses or the substructural natural frequencies. Two
modifications of the global structure are used to test the robustness of the
isolation with respect to unknown modifications and nonlinearities of the outside
structure.

5.7.1 Experimental setup

The experimental setup is shown in Fig. 5.13. The specimen, a slender alu-
minum cantilever beam, has a rectangular cross-section of 2.7 cm × 0.31 cm and
the length of 136.15 cm. The beam is vertically suspended from a stable frame,
which is seen in blue on the left-hand side of the figure. Young’s modulus of the
beam is 70 GPa, and the density is 2700 kg/m3. The upper part of the beam
(of length 79.4 cm) is the substructure to be identified. It is damaged by cut-
ting even notches near the fixed end on the length of 10.2 cm, which decreases
the bending stiffness of the damaged segment to 42% of its original stiffness
and leaves the mass nearly unchanged, see Fig. 5.14(left). Up to three different
global structures that share the same substructure are used in order to verify
the robustness of the isolation with respect to unknown modifications or nonlin-
earities of the outside structure, see Table 5.3 and Fig. 5.13. Based on the same
beam, the outside structure is modified by fixing an unknown additional mass
or by mounting a “sponge support” in place of the free end. The sponge support
can increase the structural damping and may have nonlinear characteristics.
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Figure 5.14. Experimental example. (left) The to-be-identified damage of a section of the
beam (bending stiffness decreased to 42%, mass nearly unchanged); (right) Basic excitation
f1 for time-domain identification: a windowed sine pulse sin 60πt applied using the piezo
actuator (APA).

Table 5.3. Experimental example. The three global structures with the same substructure.

Symbol Outside structure
b1 original beam
b2 original beam with an additional unknown mass
b3 original beam with a “sponge support”

Inside the substructure, two kinds of the basic excitation f1 are separately
applied to be used with different isolation and identification methods:

1. For isolation and identification in time-domain through (5.9) and (5.1), a
windowed sine pulse sin(60πt) is applied using an amplified piezo actuator
(APA) [254], see Fig. 5.14(right). The APA is fixed inside the substructure
in such a way that it can be assumed to apply a pure moment load.

2. For isolation in frequency domain via (5.13) and identification based on
fitting the natural frequencies by (5.2), the APA is not mounted and a
transverse impact by a simple uninstrumented hammer is used instead in
the role of the basic excitation. The excitation is not measured.

There are no axial excitations, which allows axial displacements of the neutral
beam axis to be neglected.

Three piezoelectric patches are glued to one of the beam faces (off the neu-
tral axis) to measure the longitudinal strain x1, x2 and x3, and the transverse
interface velocity x4 is measured using a laser vibrometer, see Fig. 5.13 and
Table 5.4. The measurement data is acquired and stored on a PC via the ac-
quisition system LabVIEW. Raw voltage readings are used in computations in
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order to avoid unnecessary scaling of the measurement noise. Two amplifiers
are used to amplify the signals from the strain sensors (x1, x2 and x3) and
the excitation signal f1. To reduce the measurement noise, each excitation is
repeated 4 or 5 times and the averaged responses are used for identification.
The sampling frequency is chosen to be 10 kHz in order to guarantee that the
sampled data contain all the necessary dynamic information about the substruc-
ture. The considered sampling time is 0.4 s (4000 time steps or the length of
the excitation) for the time-domain isolation and 4 s (40 000 time steps) for the
frequency-domain isolation.

A single virtual pinned support is modeled in the interface node to isolate
the substructure, see Fig. 5.15. As axial displacements are negligible, it is im-
plemented by the two interface sensors: the strain sensor x3 plays the role of
the free support in the rotational DOF and constrains the bending moment,
while the velocity sensor x4 plays the role of the fixed support and constrains
the transverse displacement, see Fig. 5.3(b). The two other strain sensors (x1
and x2) are located inside the substructure and used for damage identification.

Two virtual supports are used, and two constraining excitations are thus
required. A simple uninstrumented hammer is used at two points of the outside
structure to apply transverse impacts, which are denoted by f2 and f3, see
Table 5.5. In order to ensure that the corresponding responses are independent,
f2 and f3 are placed far from each other.

Let the substructure be divided into five segments, as shown in Fig. 5.15. The
damage is modeled by decreasing the bending stiffnesses of the segments, and
it is represented by the vector µ = {µ1, µ2, . . . , µ5} of their stiffness reduction

Table 5.4. Experimental example. Sensors and responses.

Symbol Measurand Position
x1 strain 1 upper substructure
x2 strain 2 lower substructure
x3 strain 3 interface
x4 transverse velocity interface

Table 5.5. Experimental example. Excitations.

Symbol Excitor Position
f1 piezo actuator/hammer substructure
f2 hammer upper outside structure
f3 hammer lower outside structure
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Figure 5.15. Experimental example. Isolation of the substructure with a single virtual pinned
support in the interface node (free support in the rotational DOF, fixed support in the trans-
verse DOF, negligible axial distortions): (left) the global structure; (right) the isolated sub-
structure and its division into five segments.

ratios, where µi ∈ (0, 1] is the ratio of the decreased stiffness of the ith segment
to its original stiffness, see (3.24). In the experiment, only the second segment
is actually damaged, and the actual, to-be-identified damage is represented by

µactual := [1.00, 0.42, 1.00, 1.00, 1.00]T . (5.21)

A local FE model of the undamaged isolated substructure is built and updated.
The beam is slender and vertically suspended, the model includes thus the effects
of the gravity. The axial distortions are neglected, since all excitations are either
moment or transverse loads. Such a local substructural model is used for the
purpose of local damage identification. No FE model of the global structure
is used. This is consistent with the fact that the global structure is modeled
only nonparametrically: the three considered global structures b1, b2 and b3 are
represented exclusively by their experimentally measured responses bi–xj–fk.
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5.7.2 Isolation and identification in time domain

For time-domain isolation, the piezo actuator is used to apply the basic ex-
citation f1 depicted in Fig. 5.14(right). The corresponding responses of the four
sensors x1 to x4 are measured in all three global structures b1 to b3 and shown
in Fig. 5.16. The responses of the three structures differ significantly, which con-
firms that the structures are substantially different. The only exception is the
strain x2: the sensor is located close to the actuator, and it responds mainly to
the excitation. The responses to the impulsive constraining excitations f2 and
f3 are shown in Fig. 5.17. Notice that there are significant differences between
the three structures b1, b2 and b3, too.
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Figure 5.16. Experimental example. Isolation in time domain. Measured responses of the three
considered global structures to the basic excitation f1 by the APA: (top left) strain x1; (top
right) strain x2; (bottom left) strain x3; (bottom right) transverse velocity x4.

The substructure is isolated by (5.9). The isolation process makes use of
the responses to the basic and constraining excitations, which can be measured
in any of the three global structures b1, b2 or b3. Figure 5.18 compares the
constructed responses x1 and x2 of the (damaged) isolated substructure to the
responses of the undamaged substructure as simulated using its FE model. The
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Figure 5.17. Experimental example. Isolation in time domain. Measured responses of the three
considered global structures to the constraining excitations f2 and f3: (top left) strain x1; (top
right) strain x2; (bottom left) strain x3; (bottom right) transverse velocity x4.

constructed responses are visually indistinguishable, which is consistent with the
fact that all three global structures share the same substructure. The influences
of its outside, including the additional mass and the sponge support, are suc-
cessfully eliminated. The clearly noticeable difference between the constructed
and the simulated responses is related to the local damage and can be exploited
for its identification.

Each of the constructed responses in Fig. 5.18 is constructed using the mea-
surements of the same global structure, out of the three possible. In order to
verify the robustness of the isolation method in a case of a global structure that
changes during the measurements, the responses to the basic and constrain-
ing excitations are measured in different global structures. As there are three
global structures, there are nine possible combinations, which are denoted by
“Bi–Cj”1. Figure 5.19 plots all the nine responses constructed this way. They

1That is, “B1–C2” denotes that the respective response is constructed using measurements
to the basic (B) excitation of the global structure b1 and measurements to the constraining
(C) excitations of b2.
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Figure 5.18. Experimental example. Isolation in time domain. Constructed responses x1 and
x2 of the same substructure, isolated out of the three considered global structures b1, b2 and
b3, and compared to the FEM-based responses of the undamaged substructure.
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Figure 5.19. Experimental example. Isolation in time domain. The nine constructed responses
of the isolated substructure. “Bi–Cj” denotes the result obtained with the responses to the
basic and constraining excitations measured respectively in global structures bi and bj .
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all match each other well, which confirms that the constructed response is not
influenced by an even developing unknown modification of the outside struc-
ture, provided the substructure remains the same. Figure 5.20(left) illustrates
the block Toeplitz structure of the matrix Bap as obtained for structure b1.
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Figure 5.20. Experimental example. Isolation in time domain. (left) Block Toeplitz structure
of the matrix Bap as measured in the global structure b1; (right) Actual and identified damage.
“Bi–Cj” denotes the result obtained with the responses to the basic and constraining excitations
measured respectively in global structures bi and bj .

Damage identification in time domain is equivalent to the minimization of
the objective function (5.1) with respect to the five stiffness reduction ratios µ1
to µ5, subject to the common sense constraints 0 < µi ≤ 1. The identification
results are shown in Fig. 5.20(right) and compared to the actual values. Both the
location and the extent of the damage are identified with a high accuracy, even
though the outside structures were different or changing. Note that the damage
is identified at the substructural level, that is no FE model of the global structure
is used for this purpose. Moreover, constructed the response of the isolated
substructure, there is no need for time-consuming repeated identification of the
generalized interface forces in each optimization step.

5.7.3 Isolation and identification in frequency domain

For isolation in frequency domain by (5.13), the beams b1 and b3 are used
without the APA. Instead, a transverse impulsive excitation of a simple unin-
strumented hammer is applied at the same location and used in the role of the
basic excitation f1. The corresponding responses of all the four sensors x1 to x4
measured in the two global structures are shown in Fig. 5.21. The identification
is based on fitting the natural frequencies, and hence a long time interval of 4 s
(40 000 time steps) is used.
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Figure 5.21. Experimental example. Isolation in frequency domain. Measured time-domain
responses of the global structures b1 and b3 to the basic excitation by a simple hammer: (left
column) global structure b1; (right column) global structure b3. (top row) basic excitation f1;
(middle row) constraining excitation f2; (bottom row) constraining excitation f3.

In a similar way as in the time-domain analysis, the responses to basic and
constraining excitations can be measured in different global structures. Two
global structures are used here, and there are thus four possible combinations.
The corresponding spectra of the constructed responses x1 and x2 of the iso-
lated substructure are shown in Fig. 5.22. The vertical gridlines mark the natural
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Figure 5.22. Experimental example. Isolation in frequency domain. Spectra of the four con-
structed responses of the isolated substructure to f1: (top left) B1–C1; (top right) B3–C1;
(bottom left) B1–C3; (bottom right) B3–C3. “Bi–Cj” denotes the result obtained with the
responses to the basic and constraining excitations measured respectively in the global struc-
tures bi and bj . The vertical gridlines mark the natural frequencies of the undamaged isolated
substructure.

frequencies computed using the FE model of the undamaged structure. They
are clearly different from the plot peaks; the differences are due to the dam-
age and can be exploited for its local identification. To decrease the spectral
leakage, the exponential window is employed with the same attenuation ratio
r = 10−2 as in the numerical example in Subsection 5.6.2. As mentioned in
Subsection 5.5.2, such a window can affect modal identification of the isolated
substructure. According to (5.20) and (5.15), given the attenuation ratio r, the
corresponding offset of the ith damping ratio is inversely proportional to ωT .
Natural frequencies ω of the isolated substructure in the experiment are much
higher than those in the numerical example and the measurement time T is
longer, so here the influence of the exponential window is small. The peaks of
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the constructed responses (Fig. 5.22) are very pronounced, and thus the first
seven natural frequencies of the isolated substructure are obtained by simple
peak-picking2; they are listed in Table 5.6. The results are in good agreement
with the natural frequencies computed using the FE model of the substructure
and the actual damage extents (5.21), which confirms that the substructure
is successfully isolated. Notice also that the identified natural frequencies are
almost the same in all four combination cases, which confirms that the isola-
tion process is independent of the outside structure: if the substructures are the
same, the constructed isolated substructures are also the same, irrespective of
the outside structure.

Table 5.6. Experimental example. Isolation in frequency domain. Natural frequencies of the
isolated substructure in Hz.

Theoretical FEM Identified experimentally
no.

intact damaged B1–C1 B3–C1 B1–C3 B3–C3
1 17.64 17.47 17.08 17.08 17.69 17.70
2 57.33 52.00 52.14 52.14 52.27 52.27
3 119.15 112.94 112.49 112.52 113.25 111.83
4 203.28 195.65 195.48 195.51 193.27 193.27
5 310.44 290.01 286.27 286.31 289.84 289.84
6 439.89 413.88 414.96 414.97 414.81 414.82
7 592.37 550.98 550.99 550.99 553.04 553.04

The identification of damage is based on updating the local FE model of the
isolated substructure to fit in relative terms its first seven natural frequencies
to the frequencies listed in Table 5.6. The first summand in (5.2) is used as
the objective function. First, for illustration purposes, it is assumed that the
location of the damage is known (second segment), so that only µ2 is unknown.
Figure 5.23(left) plots the four objective functions in dependence on µ2. All the
four minima are located close to the actual value of 42%, which is marked with
the vertical gridline. Then, the full identifications are performed with respect
to all the five stiffness reduction ratios µ1 to µ5, subject to 0 < µi ≤ 1. The
results are shown in the right-hand side of Fig. 5.23. Identification accuracy,

2Notice that besides the seven more pronounced peaks there are two small spurious peaks
at approximately 2 Hz and 375 Hz. They correspond to the first natural frequency of the
global structure and to its first torsional mode. The former is apparently not fully isolated,
while the latter cannot be modeled using a plane beam model employed here.
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Figure 5.23. Experimental example. Isolation in frequency domain: (left) Objective functions
in the four considered cases. Only µ2 (the damage of the second segment) is assumed to be
unknown. The vertical gridline mark the actual damage of 42%; (right) Actual damage and
the results of full identification. “Bi–Cj” denotes the result obtained with the responses to the
basic and constraining excitations measured respectively in the global structures bi and bj .

even if slightly lower than in the time-domain analysis, is still very good in
terms of localization and quantification of the damage. As in the case of time-
domain isolation, the damage is identified at the substructural level, so that
only local FE modeling is necessary for this purpose. Constructed the response
of the isolated substructure, the outside part, including the generalized interface
forces, can be disregarded.



6

Simultaneous identification of damages
and dynamic excitations

Identification of dynamic excitations and identification of damages are two cru-
cial problems in structural health monitoring. Over the recent years, the respec-
tive identification problems have become widely researched fields and several
robust methods have been proposed. However, the problems are almost always
treated as decoupled:

• either the external excitations are assumed to be known and the damage
is identified

• or the structure is assumed to be known in order to identify the excitations
(see a review in Subsection 2.1.2).

Such an approach can be problematic in applications, where unknown damages
and unknown excitations coexist, together influence the structural response and
are both of interest. In such cases, the related identification problems are inher-
ently coupled: it is in principle not possible to identify the unknown excitation
independently from the unknown damage.

In general, it seems that the research on simultaneous identification of ar-
bitrary dynamic excitations and structural damages is very limited. The main
difficulty seems to lie in a very different type of the involved unknowns: excita-
tions f0 vs. structural parameters µ, see (1.2). As a rule, due to their essentially
different natures, two-step iteration procedures are adopted: the excitations and
structural parameters are updated separately in each iteration, so that the op-
timization process proceeds in an alternate manner. This is a nonstandard op-
timization approach that requires dedicated identification methodologies, see
Section 6.1.

This chapter briefly reviews the state-of-the-art and describes two different
solutions to the problem of simultaneous identification of coexistent dynamic
excitations and structural damages, see also [39, 40, 55, 57, 62]. The proposed
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solutions are aimed at simplification of the identification methodologies pro-
posed so far, especially with respect to the way the two types of the involved
optimization variables are treated. Both are based on the virtual distortion
method and avoid the inconveniences of the typical two-stage alternating op-
timization procedures. The solutions explore the two following approaches to
unification of the optimization variables:

1. The first approach (Section 6.2, see [57, 62]) represents the damages in
the form of virtual distortions (pseudo loads) and identifies them together
with the unknown excitation using standard load identification proce-
dures. The identified virtual distortions are used to recover the stress–
strain relationships of the damaged elements, and consequently, the type
and extent of the damage. As a result, the type of the damage need not
be assumed a priori, which is a unique feature of this approach.

2. The second approach (Section 6.3, see [39, 40, 55]) proceeds the opposite
way and parametrizes the excitations (moving loads are considered here).
In this way, both damage and excitations are represented by a set of
unified parameters that can be simultaneously updated in each iteration
of the optimization procedure.

As usual in the VDM, the assumption of small deformations or geometric lin-
earity is required.

6.1 State-of-the-art

The unknowns involved in the problem of simultaneous identification of co-
existent excitations and damages are of very different types (excitations and
structural parameters). Accordingly, two-step iteration procedures are usually
adopted in the literature, so that the optimization process proceeds by alter-
nating between the unknowns of both types, which are updated separately from
each other. The body of related research seems to be very limited: Chen and
Li [255] propose a method based on an iterative least-squares identification pro-
cedure, which requires each degree of freedom (DOF) of the monitored structure
to be instrumented. A method based on sensitivity of structural responses is pro-
posed and experimentally verified by Lu and Law in [256], which represent the
unknown excitation force in the form of a sum of a constant and sinusoidal
terms; the parameters of the force (amplitudes and frequencies) are identified
together with the damage (modifications of element stiffnesses) with a limited
number of measurements. In [257], Zhang et al. present a method for simultane-
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ous identification of structural damage and support excitation that is modeled
using a finite series of Chebyshev polynomials; their amplitudes are treated as
the optimization variables together with the stiffness modification coefficients. In
Zhang et al. [61], only damage parameters are treated as the unknown optimiza-
tion variables: in each optimization step, assumed the damage, the excitation
is uniquely determined from the measured responses. There is also a number
of substructuring approaches based on separation of the substructure from the
global structure via the generalized interface forces that need to be identified
together with the unknown substructural parameters; see Subsection 5.2.2 for
a short review.

In case of an unknown moving load, characteristics of the coupled vehicle-
bridge system vary in time and can be significantly different from those of the
bridge alone [258]. The number of publications on simultaneous identification
of moving loads and damages seems to be as small as in the case of nonmov-
ing excitations. The author is aware of only five other papers that study the
problem of identification of selected additional structural parameters besides
the moving load, which includes parameters such as the prestressing force [259].
Zhu and Law [260] propose a method for simultaneous identification of a mov-
ing force and damage in a simply supported beam, where the excitation models
a moving vehicular load; the required number of sensors is one less than the
number of the elements of the beam. A related method is considered by Lu
and Liu in [261, 262], which identifies bridge and vehicle parameters using a
typical two-stage optimization procedure. Hoshiya and Maruyama [263] apply
a weighted global iteration procedure and the extended Kalman filter for si-
multaneous identification of a moving load and modal parameters of a simply
supported beam. The load is parametrized either by its magnitude and veloc-
ity (a constant moving force) or by its static magnitude, velocity, damping and
frequency (a moving single DOF oscillator).

Besides, there is a relatively small number of papers that use a known moving
load for detection or identification of unknown damages. It includes Majumder
and Manohar [264, 265], as well as Nasrellah and Manohar [266], who use a
moving oscillator for damage identification in linear and nonlinear beams; the
beam and the oscillator are treated together as a single coupled and time-varying
system. Sieniawska, Śniady and Żukowski use in [267] a static substitute of the
equation of motion to identify parameters of a linear structure from its responses
to a moving force of a known constant magnitude; the approach is tested ex-
perimentally on a highway bridge. Pakrashi et al. present in [268] experimental
monitoring of a progression of a crack in a beam using beam–vehicle interaction
response. Other related researches include [269–273].
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6.2 Damage-equivalent excitations

In this section, the methodology of the VDM is employed to model the
unknown damages by virtual distortions [57, 62]. These are equivalent to lo-
cally applied pseudo loads, and as mentioned in Subsection 3.1.2.2, they can
be directly identified together with the unknown excitation forces using stan-
dard linear load identification procedures, see Chapter 2. The identified virtual
distortions are used to recover the stress–strain relationships of the damaged
elements. As a result, the damages of unknown types can be identified via an
analysis of the identified stress–strain curves. Therefore, no damage model needs
to be assumed in advance, which is considered to be an important advantage
of this approach. This advantage comes at the cost: in practice, an a priori in-
formation about the locations of the excitations and the damages is required in
order to keep the number of sensors reasonably small1.

The approach can be used off-line and online by repetitive applications in
a moving time window. The numerical costs are considerably reduced by approx-
imating the unknown excitations and virtual distortions with a set of suitable
approximating functions (splines, wavelets, load shape functions, etc.). First,
a numerical experiment of a truss with 5% measurement error validates that
the two tested damage types (constant stiffness reduction and breathing crack)
can be identified along with the excitation. A damaged cantilever aluminum
beam is then used in an experimental verification; the identification is success-
fully performed off-line as well as online.

6.2.1 VDM-based formulation and the direct problem

For the sake of notational simplicity only truss structures, damages related
to stiffness and strain sensors are considered here. These simplifications are
inessential, since the methodology can be straightforwardly extended to include
other damage patterns and nonlinearities as well as other types of structures and
sensors, see a more general formulation of the VDM in Chapter 3. In particu-
lar, specific generalizations to plates and frames are discussed in [28, 161, 195],
mass-related modifications are discussed in Chapter 4 and elastoplastic struc-
tures are considered in Chapter 7. Strain response is used here because of its
straightforward relation to the virtual distortion of a truss element, see (6.5a).

1In practical applications the information on localization might be partly provided by a
dedicated external system [274, 275]. However, in further research this drawback should be
also addressed directly.
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A truss element has only a single virtual distortion (see Subsection 3.2.1),
which is the axial distortion

ε0i (t) := κ0i1(t), (6.1)

where i indexes the potentially damaged elements. Correspondingly, for a truss
structure with stiffness-related damages, each line of (3.29b) can be expressed
in the following integral form:

εi(t) = εLi (t) +
∑
k

t∫
0

Bκκ
ik (t− τ)ε0k(τ) dτ, (6.2)

where εi(t) is the strain response of the ith element in the damaged structure to
a certain external excitation f0(t), εLi (t) is the strain response to the same exci-
tation of the same element in the intact structure, and the summation extends
over all potentially damaged elements. As in (3.29b), zero initial conditions have
to be assumed. In modeling the stresses of the damaged elements, the virtual
distortion has to be subtracted from the total strain,

σi(t) = Ei

(
εi(t)− ε0i (t)

)
, (6.3)

where Ei denotes the original Young’s modulus of the undamaged ith element.
The virtual distortion ε0i (t) of the ith element models its stiffness-related

defect, which is expressed in terms of the (possibly time-dependent) modified
stiffness Ẽi(t) or the corresponding stiffness modification coefficient µi(t),

µi(t) =
Ẽi(t)

Ei
, (6.4)

which is the direct counterpart of (3.24) for truss structures and yields the
following counterpart of (3.28b):

ε0i (t) = (1− µi(t)) εi(t) (6.5a)

or, equivalently,

µi(t) =
εi(t)− ε0i (t)

εi(t)
. (6.5b)

In the direct problem, the external excitation f0(t) and the damages µi(t) are
known in advance and used in a numerical simulation of the structural response.
In order to determine the corresponding virtual distortions, the strain relation
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(6.2) is substituted into the right-hand side of (6.5a), which yields the following
simpler counterpart of (3.32):

ε0i (t)− (1− µi(t))
∑
k

t∫
0

Bκκ
ik (t− τ)ε0k(τ) dτ = (1− µi(t)) εLi (t). (6.6)

Equation (6.6), if collected for all potentially damaged elements i, forms a system
of Volterra integral equations. Notice that in a case of a time-variable stiffness
modification, the coefficient µi(t) often explicitly depends only on the current
value of the strain εi(t), so that (6.6) ceases to be linear and it might be difficult
to solve it using standard approaches. In such a case, the equation is usually
solved iteratively with respect to time, by finding ε0i (t) in successive time steps.
In each time step, the following procedure is used:

1. A trial step is taken using the values from the previous time step, µi(t) :=
µi(t−∆t). A discretized version of (6.6),∑

k

(
δik − (1− µi(t))Dκκ

ik (0)
)
ε0k(t)

= (1− µi(t))

(
εLi (t) +

∑
k

t−1∑
τ=0

Dκκ
ik (t− τ)ε0k(τ)

)
, (6.7)

where Dκκ
ik (t) is the discretized version of the continuous impulse response

function Bκκ
ik (t), is solved for the current time step t and yields the cor-

responding trial values of the virtual distortions ε0i (t), which are then
used in (6.2) and (6.3) to obtain the trial values of the strain and stress
responses εi(t) and σi(t).

2. The compliance of the trial strains with the assumed trial values of µi(t)
is verified. If compliant, the trial step is accepted.

3. If not compliant, the noncompliant values of µi(t) are updated (for exam-
ple, the value for compression is replaced with the value for tension, or
vice versa) and the computations in the current time step are repeated.

The above procedure is best-suited to the case, when there is a discrete set
of possible values of the coefficients µi(t). It includes the discussed later case
of a breathing crack (two different values of µi to be used in tension and in
compression). In such cases, updating the damage coefficients in the last of
the above points is straightforward (in case of noncompliance, the other value
is simply selected) and the repeated solution of (6.7) usually yields accurate
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values of the virtual distortions and compliant strains. In other words, for the
case of a breathing crack, possible repeated solutions of (6.7) are required only
if the set of elements in tension needs to be updated, but given this set, the
corresponding response is computed in a single step, without any iterations
with respect to responses or virtual distortions. An analogous formulation is
possible in the more general case of a constitutive law that is linear in intervals,
see also Chapter 7 for the case of a bilinear isotropic hardening plasticity.

6.2.2 Off-line identification

According to (6.2), the response of the damaged structure is the sum of the
1. original response εLi (t) of the undamaged structure to the external exci-

tation f0(t) and the

2. cumulated effects of the virtual distortions that model the damage.
The response εLi (t) depends directly on the unknown excitation, and it can be
represented in the form of a convolution of the excitation with the respective
impulse response functions of the undamaged structure,

εLi (t) =
∑
j

t∫
0

Bκf
ij (t− τ)f0j (τ) dτ, (6.8)

where f0j (t) is the unknown excitation in the jth potentially load-exposed DOF,
Bκf

ij (t) denotes the corresponding impulse response function (strain response in
the ith element of the undamaged structure to an impulsive excitation in its jth
DOF), and the summation extends over all DOFs that are potentially exposed
to the excitation.

In the direct problem, the model of the damage is known a priori, so that the
virtual distortions are uniquely determined by the damage and the excitation.
However, in the inverse problem the type of the damage is unknown. Thus, the
virtual distortions ε0i (t) and the excitation f0j (t) are treated here as independent
unknowns. Substitution of (6.8) into (6.2) yields

εi(t) =
∑
j

t∫
0

Bκf
ij (t− τ)f0j (τ) dτ +

∑
k

t∫
0

Bκκ
ik (t− τ)ε0k(τ) dτ, (6.9)

which expresses the response of the damaged structure in terms of the unknowns
of both types, f0j (t) and ε0k(t). Equation (6.9), collected for all i-indexed sensors,
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forms a system of integral equations of the Volterra type, which in the discretized
form can be stated as a single large linear equation,

ε = Bκff0 +Bκκε0

=
[
Bκf Bκκ

] [ f0

ε0

]
= Bz0,

(6.10)

where the vector z0 collects together the vectors f and ε0 that contain respec-
tively all the discretized excitations in all potentially load-exposed DOFs and
all the discretized virtual distortions in all potentially damaged elements. The
matrices Bκf and Bκκ are the discretized versions of the corresponding convolu-
tion operators. By a proper ordering of the elements of z0, the matrix B can be
structured as a large block matrix composed of lower triangular Toeplitz matri-
ces, which relate the discretized sensor responses to unit excitations or to unit
distortions. This is the same familiar form, as that of the matrices in Figs. 2.3,
4.2 and 5.20 (bottom left).

6.2.2.1 Identification of excitations and virtual distortions

According to (6.9) or (6.10), information about the unknown excitation and
damage is reflected in the response. The identification is thus equivalent to
a comparison of the computed response vector ε with the measured response
vector εM in order to solve the resulting equation,

εM = Bz0, (6.11a)

which is a large finite-dimensional linear system. For a unique solution, there
should be at least as many independent sensors as the total number of the
potentially load-exposed DOFs and damaged elements. In practice, it requires
an information about the potential locations of the damages and excitations to
be available a priori.

The system (6.11a) is dense, and the numbers of equations and unknowns
are both proportional to the number of the time steps Nt: If the total number
of load-exposed DOFs and damages is N and the number of sensors is Nr, then
the dimension of B is NrNt ×NNt. In fact, (6.11a) is a counterpart of (2.31a)
and an approximation of the forces and virtual distortions (e.g., by splines,
wavelets or load shape functions [60]) can be used to reduce the numerical costs
and improve the numerical conditioning. In this way, the following equation is
obtained:

εM ≈ BNα, (6.11b)
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which is a counterpart of (2.32) (z0 ≈ Nα, the columns of N contain the
approximating functions and the approximating coefficients α are far fewer in
number then the original unknowns z0).

In most practical situations, solution of the linear system (6.11a) corresponds
to a deconvolution. As mentioned in Subsection 2.2.4.3, this is an inherently ill-
conditioned problem, so that a small disturbance of εM (for example by an
inevitable measurement error) may cause a large error in the identified excita-
tions and virtual distortions. Therefore, it is necessary to numerically regularize
the solution, see [67, 109, 111, 112, 128–130, 137] or a short overview of regu-
larization techniques in Subsection A.3.2.

6.2.2.2 Identification of damages

The virtual distortions and excitation forces, identified by (6.11), can be used
in (6.10) to compute the strains of the damaged elements and then, by (6.3), to
recover their stresses. The recovered stress–strain relationships of the damaged
elements can be analyzed to identify the types of the damages and their extents.
Two types of damages are considered here, both are expressible in terms of
a single stiffness reduction coefficient:

• Constant reduction of stiffness (e.g., related to a corrosion),

µi(t) = µcrs
i , (6.12a)

where µcrs
i < 1.

• Breathing crack model with a reduced stiffness in tension,

µi(t) =

{
1 if εi(t) < 0 (compression),
µbc
i if εi(t) ≥ 0 (tension),

(6.12b)

where µbc
α < 1. Such a model, although simple, seems to be adequate for

the purposes of low-frequency SHM, see Friswell [276] or Ostachowicz and
Krawczuk [277].

For each potentially damaged element, the stress–strain relationship is recov-
ered in the form of a discrete-time sequence of pairs (εi(t), σi(t)). Given these
pairs, the type and extent of each damage can be identified by square best-
fitting of the theoretical curves, which has to be performed separately for each
considered damage type,
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µcrs
i :=

1

2

∑
t

(σi(t)− µiEiεi(t))
2

=
1

Ei

∑
t
εi(t)σi(t)∑
t
ε2i (t)

(6.13a)

and

µbc
i :=

1

2

∑
t

(σi(t)− µiEiεi(t))
2 Iεi(t)>0

=
1

Ei

∑
t
εi(t)σi(t) Iεi(t)>0∑
t
ε2i (t) Iεi(t)>0

,

(6.13b)

where Iεi(t)>0 is the indicator function defined in (2.64), and then by choosing
the damage type that better fits the stress–strain relationship, that is yields a
smaller least-square distance∑

t
[σi(t)− µi(t)Eiεi(t)]

2∑
t
σ2i (t)

. (6.14)

6.2.3 Online identification

The main task in identification of coexistent external excitation and dam-
age is to solve (6.11), which is basically equivalent to solving a discretized de-
convolution problem. The quality of the solution and the computational effort
depend mainly on the matrix B or, for (6.11b), BN. When the sampling time
is long, these matrices can be prohibitively large, and each solution might be
time-consuming and prone to numerical errors. Moreover, (6.11) can be used
only for off-line identification. In order to eliminate the drawbacks and to make
online identification possible, repetitive identification in a moving time window
is employed here. The assumed linearity of the original undamaged structure is
utilized.

The damaged structure, including the nonlinear case of a breathing crack,
is converted by the VDM into a linear distorted structure (the original intact
linear structure with the imposed virtual distortions). This is indicated by (6.9),
which assumes zero initial conditions. Let the sampling time interval be divided
into several (possibly overlapping) time sections. The response of the distorted
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structure in the nth section can be expressed by the following modified version
of (6.9):

ε
(n)
i (t) = ε̄

(n)
i (t) +

∑
j

t∫
0

Bκf
ij (t− τ)f

0(n)
j (τ) dτ

+
∑
k

t∫
0

Bκκ(t− τ)ε0(n)k (τ) dτ,

(6.15)

which takes into account also the free vibrations ε̄(n)i (t) of the undamaged struc-
ture caused by the nonzero initial conditions at the beginning of the nth time
section.

The strains computed by a discretized version of (6.15) can be compared to
the measured strains and stated in the form of a single matrix equation similar
to (6.11a),

εM(n) − ε̄(n) = B(n)z0(n), (6.16)

which is formed separately for each time section, and where B(n) is the matrix
B reduced according to the length of the nth section, while the vector εM(n)

collects the discretized strains measured in the nth time section. Equation (6.16)
covers only one time section and is thus much smaller and easier to solve than
(6.11). If the excitations and virtual distortions in the previous time sections
are already identified, the initial conditions of the successive time section and
the corresponding free vibrations can be computed straightforwardly. Equation
(6.16) can be thus used online, in successive time sections, to obtain iteratively
all the unknown excitations and virtual distortions in the whole considered time
interval.

As observed in practice, the identified excitations tend to drift away from the
exact solution, which causes a lower accuracy near the end of each time section.
A practical way to improve the accuracy is to consider partly overlapping time
sections, so that less accurate results from the previous section can be improved
using the identification results from the successive time section.

6.2.4 Numerical example

6.2.4.1 The structure

Figure 6.1 shows the modeled truss structure. The structure is 2.5 m long,
and all its elements are 0.5 m long with the exception of the five diagonal
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Figure 6.1. Truss structure modeled in the numerical example. Dashed lines mark the damaged
elements (no. 3 and 5); strain sensors are marked with shorter solid green lines (elements no.
1, 2, 3, 4, 6, 7 and 8). The moving force is proportionally transferred to the two nearest nodes.

elements of the upper plane, which are 0.5
√
2 m long. All the elements are

10 mm2 in cross-section and made of steel with the density 7800 kg/m3 and
Young’s modulus of 210 GPa. Additionally, the mass of each node is 0.13 kg.
The two left-hand side corner nodes of the upper plane are fixed, while the two
opposite right-hand side corner nodes have restrained only the vertical DOF
and are free to move in the horizontal plane.

It is assumed that the structure is excited by a moving vertical force, which
is transferred to the lower five nodes of the structure as via a system of rigid
beams. More specifically, the transferred nodal forces are nonzero only in the
two nodes nearest to the moving force, for which they are equal to (1− p)F (t)
and pF (t), where p is the percentage of the distance between the nodes already
covered by the force (25% if the force has advanced 1/4 of the distance, 50% if
it is already in the middle point between the nodes, etc.).

Two damages are assumed to occur in elements no. 3 and 5; these elements
are drawn in Fig. 6.1 using dashed lines. Seven strain sensors are placed on
elements no. 1, 2, 3, 4, 6, 7 and 8, which are marked with shorter parallel solid
lines. The considered time interval is T = 48 ms in total, and it is discretized
into 241 time steps of 0.2 ms each. The dimensions of the full matrix B are thus
1687×1687. The matrix is generated numerically using the Newmark integration
scheme [145–148] and the equation of motion of the FE model of the structure.
The matrix has a 7×7 block structure: seven block rows correspond to the seven
sensors, while five block columns correspond to the five excited DOFs and the
two other block columns correspond to the two damaged elements; there are
241 time steps, and hence each block is a 241 × 241 lower triangular Toeplitz
matrix.
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6.2.4.2 Actual damages and excitations

Figure 6.2a plots the time-history of the assumed actual excitation, which is
identified in the following section with the discussed approaches. The excitation
simulates a time-dependent load that moves along the structure at a constant
velocity of v = 41.667 m/s. As described, the load is transferred to the two
nearest structural nodes; Fig. 6.2b plots the corresponding nodal excitations.
The computed exact responses of the considered strain sensors in the undamaged
structure are plotted in Fig. 6.2c. In order to test the damage identification, two
damage types are considered:

1. Breathing 40% crack (bc) in the element no. 3 (Young’s modulus is re-
duced by 40% when the element is in tension),

µ3(t) =

{
1 if ε3(t) ≤ 0,

0.6 if ε3(t) > 0.
(6.17a)

2. Constant stiffness reduction (csr) in the element no. 5 (Young’s modulus
is reduced by 70%),

µ5(t) = 0.3. (6.17b)

These damage types and extents are used to simulate the response of the dam-
aged structure, which is then contaminated with numerically generated uncorre-
lated Gaussian noise at the 5% rms level in order to simulate the measurement
error, see Fig. 6.2d. By a comparison with the response of the undamaged struc-
ture (Fig. 6.2c) a relatively small influence of the considered damages might be
noticed. The (exagerrated) deformed state of the damaged structure in selected
time steps is shown in Fig. 6.3.

6.2.4.3 Identification results

Both online and off-line identification schemes are tested; for online identi-
fication, the total time interval of 241 time steps (48 ms) is divided into three
time sections each of 120 time steps with overlapping parts of 60 time steps.
In each case, identification is performed by (6.11a) as well as by (6.11b) with
excitations and virtual distortions approximated by load shape functions, see
Fig. 2.4. In the off-line case, eighteen approximating functions are used, while
in the online case fourteen functions are used for each of the three considered
time sections. Table 6.1 lists the dimensions of the resulting matrices B or BN
of the linear systems (6.11).
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Figure 6.2. Assumed actual excitation and the corresponding simulated responses: (a) As-
sumed actual load; (b) Corresponding equivalent nodal excitations; (c) Exact response of the
undamaged structure; (d) Response of the damaged structure contaminated with 5% rms
Gaussian uncorrelated noise.
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t = 10 ms

t = 20 ms

t = 30 ms

t = 40 ms

Figure 6.3. Deformed damaged structure in time steps t = 10 ms, 20 ms, 30 ms, 40 ms
(exaggeration factor 1500).

Table 6.1. Dimensions of the linear systems (6.11).

Off-line case Online case
Full (B) 1687×1687 847×847
Approximated (BN) 1687×126 847×98
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The system matrices are ill-conditioned, but not of unmanageable dimen-
sions, hence the solutions are computed using the truncated singular value de-
composition. The regularization level is defined by the number kTSVD of the
truncated singular values. In each case it is determined separately using the
L-curve technique, that is by weighting in the log-log scale the residual against
the norm of the first differences of the solution, see, e.g., [67, 135] or Subsec-
tion A.3.2. In the full off-line case, the corner of the L-curve corresponds to
kTSVD ≈ 350, see Fig. 6.4 (left); it is thus assumed that kTSVD = 357, that is
all singular values less than 0.1% of the maximum singular value are discarded.
For the full online case kTSVD = 194 has been chosen in a similar way, which
corresponds to the truncation level of 0.2%. The L-curves corresponding to the
approximated cases, see an example in Fig. 6.4 (right) for the off-line case,
consist of the lower branches only, which confirms the well-conditioning of the
approximated problems. Here, a low value of kTSVD = 5 is used to guarantee
the reliability.
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Figure 6.4. The L-curve (norm of the first differences vs. the residual, L is the matrix of the
first differences), off-line identification: (left) full matrix B; (right) approximated matrix BN.

The computational cost of a single identification depends mainly on the cost
of the singular value decomposition of the system matrix, which for an m × n
matrix (m ≥ n) is of order O(mn2) [139]. Hence, as seen in Table 6.1, the cost
can be reduced by almost two orders of magnitude by using the approximations.
The reduction due to the repetitive smaller identifications in the online case,
which use the same system matrix and hence require only a single decomposi-
tion, is less pronounced (below one order of magnitude). In the case of several
repetitive identifications, both off-line and online, the numerically costly SVD
has to be computed only once, and thus the total cost of a single identification
is smaller by one order of magnitude.
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Identification of excitations. The actual nodal excitations and the excita-
tions identified in the four considered cases are compared in Fig. 6.5. If it is
known in advance, or deduced from the characteristic features of the identified
nodal forces, that all the excitations correspond to a load moving at a constant
velocity, then it can be also constructed from the identified time-histories; the
results are shown in Fig. 6.6. Although the identified excitations have some os-
cillations due to the simulated measurement noise, they are all reconstructed
with a good accuracy. Notice that the approximation of the excitations and the
virtual distortions by the load shape functions not only reduces the numeri-
cal costs, but also filters out the noise to a certain degree while preserving the
accuracy.

Identification of damages. For each of the two damaged elements, the best-
fitting extents of the damages of both types (µcsr

i and µbc
i , i ∈ {3, 5}) are

computed by (6.13) and used to identify the type of the damage by choosing
the better fit via (6.14). The results are listed in Tables 6.2 and 6.3. Figure 6.7
plots the actual, raw identified and fitted stress–strain relationships.

Table 6.2. Off-line identification of damage extent (by (6.13)) and of damage type (by smaller
fit (6.14)) for elements no. 3 and 5.

Full matrix Approximated Actual
extent fit extent fit value

µcsr
3 =0.9046 0.0424 µcsr

3 =0.9048 0.0363 —
µbc
3 =0.5950 0.0068 µbc

3 =0.5972 0.0008 µbc
3 =0.6

µcsr
5 =0.2741 0.0360 µcsr

5 =0.2765 0.0464 µcsr
5 =0.3

µbc
5 =0.2699 0.2480 µbc

5 =0.2706 0.1247 —

In general, type of the damage can be properly identified by selecting the
type that fits better the recovered stress–strain relationship, that is minimizes
the fit (6.14). However, in online identification with short time sections, a dam-
aged element may happen to be almost only in tension during the whole time
section (e.g., as element no. 5 in time section I). In such a case, the damage type
cannot be reliably estimated in that specific section, since compression data are
necessary for distinguishing between both tested damage types. Similarly, if an
element with a breathing crack damage is in compression almost the whole time
section (as element no. 3 in time section III), reliable differentiation between a
marginal reduction of stiffness and a breathing crack is not possible. Neverthe-
less, these shortcomings are unavoidable; the proper damage type in such cases
can be deduced only by comparing the results obtained in all time sections.
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Figure 6.5. Identified equivalent nodal excitations: (a) off-line, full matrix (no approxima-
tions); (b) off-line, approximated; (c) online, full matrix (no approximations); (d) online,
approximated.
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Figure 6.6. Reconstructed moving force for the four considered cases (off-line full matrix, off-
line approximated, online full matrix and online approximated), compare with the actual force
in Fig. 6.2a.

Because of the influence of noise, the recovered stress–strain relationships of
the damaged elements are scattered around the actual relationships (Fig. 6.7).
The damage extents are estimated by least-square fitting. Notice that, in the
online identification, the identification accuracy varies between the time sections
due to the measurement error. However, all the tested identification schemes
(off-line and online, with and without approximations) yield satisfactory results,
which is especially important provided the considerably smaller numerical cost
(by two to three orders of magnitude) of the online approximated method.

6.2.5 Experimental example

6.2.5.1 The structure

The described approach is verified experimentally using an aluminum can-
tilever beam and the setup used also in Section 5.7. The experimental setup is
shown in Fig. 6.8. Its physical parameters are listed in Section 5.7. No “sponge
support” and no additional mass are used.

6.2.5.2 Actual damage and excitation

The beam is intentionally damaged by cutting even notches near its fixed
end on the section of a length of 10.23 cm. The stiffness of the damaged sec-
tion is reduced to 42% of the original stiffness, while the mass remains almost
unchanged.

The excitation is applied using an Amplified Piezo Actuator (APA, [254]),
which is fixed on the beam in such a way that is can be assumed to apply
a pure moment load. The structural dynamic responses are measured by three
piezoelectric patches glued to the beam (denoted in the following by x1, x2
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Figure 6.8. Experimental setup.

and x3). In the considered setup, they measure axial strain off the neutral axis
of the beam, which is proportional to the local curvature. Applied excitation is
also measured; Fig. 6.9 (top) plots the time-history of the force applied to the
actuator clamps. The sampling frequency is 2500 Hz. The measured responses
are shown in the bottom plot of Fig. 6.9. The analyzed time interval is 3.52 s.

6.2.5.3 Identification results

A finite element model of the undamaged beam is assembled and updated;
the damaged section is assumed to be a single element. The model considers the
influence of gravity and the presence of the actuator and sensors. A generic 2D
beam element has three virtual distortions. However, a pure moment excitation
is applied here, which results in mainly bending distortions, hence the other
two distortions (axial and shear/bending, see Subsection 3.2.1) are neglected in
the analysis. Therefore, one external excitation and one damage-related virtual
distortion are the unknowns to be identified, and at least two sensors are required
to obtain a unique solution.
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Figure 6.9. The excitation applied to the actuator clamps (top) and the corresponding struc-
tural responses (bottom).

The identification is performed using a moving time window. Each window
has 400 time steps; each two successive windows have an overlapping section of
200 steps. A total of 8800 time steps is analyzed within the total time interval
of 3.52 s, which is divided into 43 time sections. In each of them, the unknown
excitation and virtual distortion are identified using an approximation based
on forty two load shape functions. Two or three sensors are used separately;
the identified excitations are shown in Fig. 6.10 and compared to the actual
(measured) excitation.

Figure 6.11 plots the (scaled, see (6.3)) stress–strain relationship of the dam-
aged element, as recovered using sensors x1 and x3. The relationship resembles
a linear function, which suggests that the damage can be represented by a con-
stant reduction of stiffness, see (6.5b), which is indeed true. The extent of the
damage of such a type is estimated separately in each time section, and the
results are shown in Fig. 6.12. In this way, the damage can be monitored online,
that is time section by time section. The average damage extent of all the time
windows and the value identified in a single off-line identification are listed in
Table 6.4.
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Figure 6.10. Excitation applied to the actuator clamps: actual and identified using different
combinations of available sensors.
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Figure 6.12. Damage extents identified online in each time section and with different combi-
nations of sensors.

Table 6.4. Damage extent (in per cent) of the damaged segment: actual, identified off-line and
online using different combinations of available sensors. The results of online identifications
are computed as the average values of the results obtained in all time sections.

Actual µ̄online
1,2 µoff-line

1,2 µ̄online
1,3 µoff-line

1,3 µ̄online
1,2,3 µoff-line

1,2,3

42.0 34.0 32.7 38.8 38.1 39.1 38.8
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As expected, the accuracy of identification is better if three sensors are used,
although the results obtained with sensors x1 and x3 are also satisfactory. The
results obtained with sensors x1 and x2 are not as accurate, which might be
related to the fact that x2 is much closer to x1, to the damaged element and to
the actuator than x3.

6.3 Parametrization of loads

In the preceding section, the damages are represented in the form of equiv-
alent pseudo loads (or virtual distortions) and identified using standard load
identification procedures. This section describes the opposite solution, see [39,
40, 55]: the excitations are parametrized, so that damages and excitations are
represented together by a single set of parameters that can be simultaneously
updated in each iteration of the optimization procedure. All the unknowns are
thus treated in a unified manner: no two-step identification procedures are re-
quired, and all standard optimization algorithms can be directly employed.

This section considers moving vehicular loads. They are represented by mov-
ing masses, which are treated here as the optimization variables and identified
together with the damage parameters. This is contrary to most other researches
in identification of moving loads, where the interaction forces between the struc-
ture and the masses usually play the roles of the unknowns. In these approaches,
the values of the forces are in general assumed to be independent in successive
time steps, so that, in order to ensure a unique solution, the number of sensors
must not be smaller than the number of the moving masses. Such an identifica-
tion is usually highly ill-conditioned and a numerical regularization is required.
The regularization makes use of a priori assumptions about force time-histories,
which usually concern their magnitude or smoothness (Tikhonov regulariza-
tion). Such assumptions are often more numerical than physical in nature, and
it is not always obvious how to design them, so that they can provide relevant
information instead of the missing sensors (see the discussion of the unrecon-
structible component of the actual excitation in Chapter 2). By contrast, if the
masses are treated as the optimization variables, the force time-histories in all
time steps are coupled to the structural response and so they cease to be in-
dependent. This kind of an assumption is of a physical nature and allows the
number of the necessary sensors to be decreased. This is illustrated in the nu-
merical example of a three-span beam in Subsection 6.3.4, where a single strain
sensor is used for accurate identification of three moving masses, and as many
as seven unknowns (three masses and four stiffness reduction ratios) can be ac-
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curately identified using two sensors only, even despite the three concurrently
used types of modeling errors and the simulated 10% measurement error.

Therefore, compared to the approaches based on identification of the inter-
action forces, parametrization of the loads
• yields a far smaller number of optimization variables,
• significantly improves the conditioning of the identification process and
• decreases the number of sensors that are required for a unique solution.

However, these advantages come at the following cost:
• The identification problem becomes nonlinear, which is typical for para-

metric optimization problems.
• Moreover, the damages are parametrized, which means that their type

must be known or assumed in advance, unlike in Section 6.2. Here, the
damage is modeled in terms of stiffness reduction of the involved finite
elements, (3.24), which seems to be typical for global SHM methods.

The VDM is employed via the concept of the moving dynamic influence
matrix, which is defined here as a collection of the structural impulse response
functions with respect to the time-dependent positions of the moving masses.
For given values of the variables, the moving dynamic influence matrix allows
the response of the system to be computed quickly without a full numerical
simulation and without a repetitive assembly of the time-variant mass matrix
anew in each time step.

From the practical point of view, it must be also stressed that before any
practical application in bridge traffic monitoring, more research has to be per-
formed, for example to test multi-DOF vehicle models [55], more advanced
bridge models and to confirm the locality of the effects of the mesh-related
model errors.

6.3.1 Modeling of moving masses

Moving masses in a bridge–vehicle system not only excite the supporting
structure via their gravities but they also modify its inertial properties. Here,
similar as in the case of structural damages, moving masses are modeled via the
corresponding moving pseudo loads that are time-dependent and include the
gravities of the masses as well as model all their inertial effects. Thanks to the
approach of the VDM, the structural response can be quickly computed via the
convolution of the pseudo loads with the pre-computed structural impulse re-
sponse functions, so that a repeated numerical integration of the equation of
motion as well as updating the mass matrix in each time step are avoided.
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6.3.1.1 Pseudo loads

Consider Nm masses m1, . . . ,mNm that move with respective constant veloc-
ities over a flat supporting structure of a finite length (the undamaged bridge).
Figure 6.13 illustrates the considered setup using a simply supported beam in
the role of the bridge. Each mass is assumed to attach to the bridge at its current
position.

Figure 6.13. A sample supporting system and the moving masses.

In the standard approach, the bridge is modeled as a discrete finite element
structure. The moving masses and the bridge collectively constitute a single
system, which is excited by the moving gravities of the masses; the global ex-
citation vector is computed in each time step using the shape functions of the
finite elements that are currently carrying the masses. The system mass matrix
is continuously re-assembled with respect to the current positions of the masses.
The equation of motion of the undamaged system can be thus written in the
following form:

(M+∆M(t)) üL(t) +Cu̇L(t) +KuL(t) =

Nm∑
i=1

mig bi(t), (6.18)

where M, C and K are respectively the mass, damping and stiffness matrices
of the undamaged bridge. The matrix ∆M(t) models the effects of the attached
masses,

∆M(t) =

Nm∑
i=1

mibi(t)b
T
i (t), (6.19)

and bi(t) denotes the time-dependent global load allocation vector of the ith
mass. If the mass is outside the bridge, the vector bi(t) vanishes; otherwise, it
is computed using the shape functions of the finite element that is currently
carrying the mass. The dynamic response of the bridge can be obtained by a
numerical integration of (6.18), provided the velocities of the masses are well
below the critical speed, as discussed by Bajer and Dyniewicz in [278–280].
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In accordance with the general idea of the virtual distortion method, the
time-dependent matrix ∆M(t) in (6.18) is moved to the right-hand side to
obtain:

MüL(t) +Cu̇L(t) +KuL(t) =

Nm∑
i=1

p0i (t)bi(t), (6.20)

which is the equation of motion of the undamaged bridge alone subjected to the
moving pseudo loads p0i (t) that act at the positions of the moving masses and
represent both their gravities and the inertial effects,

p0i (t) = mi

(
g − aL

i (t)
)
, (6.21)

where the vertical acceleration aL
i (t) of the ith mass couples the pseudo load

p0i (t) back to the structural response,

aL
i (t) = bT

i (t)ü
L(t). (6.22)

Notice that (6.21) is analogical to (3.28a).

6.3.1.2 Moving dynamic influence matrix

The dependence of the vertical accelerations of the moving masses on the
pseudo loads p0i (t) can be expressed explicitly by using in (6.22) the impulse
response matrix Ḧap(t) that contains the acceleration responses of all the DOFs
of the undamaged bridge to unit impulse excitations in all its DOFs:

aL
i (t) = bT

i (t)

t∫
0

Ḧap(t− τ)
Nm∑
j=1

p0j (τ)bj(τ) dτ

=

Nm∑
j=1

t∫
0

B̈ap
ij (t, τ)p

0
j (τ) dτ,

(6.23)

where the convolution kernel B̈ap
ij (t, τ) represents the vertical acceleration of the

ith mass at time t as a result of an impulsive excitation applied at time τ at
the respective location of the jth mass,

B̈ap
ij (t, τ) = bT

i (t)Ḧ
ap(t− τ)bj(τ). (6.24)

Equation (6.23) is substituted into (6.21), which can be then stated in the
form typical for the VDM:

mig = p0i (t) +mi

Nm∑
j=1

t∫
0

B̈ap
ij (t, τ)p

0
j (τ) dτ. (6.25)
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Equation (6.25), if collected for all the considered moving masses, constitutes
a system of linear integral equations with the pseudo loads p0i (t) as the un-
knowns. The kernel of the respective matrix integral operator, B̈ap

ij (t, τ), is ex-
pressed with respect to the positions of the moving masses that change in time,
and thus it ceases to be a difference kernel; notice that an impulsive compo-
nent can occur on its diagonal. The kernel, or its discretized version, is called
the moving dynamic influence matrix. As it does not depend on the masses, it
needs to be computed only once for a certain bridge and given velocities of the
masses. Thereupon, in the coupled bridge–moving mass analysis, the pseudo
loads p0i (t) that model the masses can be quickly found by solving (a discretized
version of) (6.25). In this way, thanks to the VDM, it is possible to avoid the
repeated assembling of the system mass matrix in each time step, as required
in any direct solution of (6.18).

6.3.1.3 Modeled structural response

Given the pseudo loads p0i (t) and assumed zero initial conditions, the re-
sponse hL

k (t) of the kth linear sensor placed in the structure is modeled in the
following way:

hL
k (t) =

Nm∑
i=1

t∫
0

Bhp
ki (t, τ)p

0
i (τ) dτ, (6.26)

where Bhp
ki (t, τ) denotes the respective impulse response function of the undam-

aged structure, that is the response of the kth sensor at time t to the unit
impulsive excitation that is applied in time τ at the respective location of the
ith mass.

6.3.2 Coupled modeling of moving masses and damages

6.3.2.1 Virtual distortions and pseudo loads

The VDM can be employed to simultaneously model stiffness-related dam-
ages and moving masses by using virtual distortions and pseudo loads respec-
tively. As in (3.28), they are both coupled to the structural response, hence
a coupled analysis is necessary. First, by an analogy to (3.29) and (6.9), the ac-
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celeration ai(t) and distortion κij(t) responses of the damaged bridge structure
are stated in the following form:

ai(t) =

Nm∑
j=1

t∫
0

B̈ap
ij (t, τ)p

0
j (τ) dτ +

∑
j,k

t∫
0

B̈aκ
ijk(t, τ)κ

0
jk(τ) dτ, (6.27a)

κij(t) =

Nm∑
k=1

t∫
0

Bκp
ijk(t, τ)p

0
k(τ) dτ +

∑
k,l

t∫
0

Bκκ
ijkl(t− τ)κ0kl(τ) dτ, (6.27b)

where B̈aκ
ijk(t, τ) and Bκp

ijk(t, τ) are the coupling matrices of the impulse response
functions: B̈aκ

ijk(t, τ) contains the vertical acceleration of the ith mass at time
t to an impulsive unit distortion φjk applied at time τ , and Bκp

ijk(t, τ) contains
the response of the jth distortion of the ith element at time t as a result of an
impulse excitation applied at time τ at the respective location of the kth mass.

Equations (6.27), when substituted into (3.28b) and (6.21), yield the follow-
ing system of linear integral equations:

mig = p0i (t) +mi

Nm∑
j=1

t∫
0

B̈ap
ij (t, τ)p

0
j (τ) dτ

+mi

∑
j,k

t∫
0

B̈aκ
ijk(t, τ)κ

0
jk(τ) dτ,

(6.28a)

0 = (1− µi)
Nm∑
k=1

t∫
0

Bκp
ijk(t, τ)p

0
k(τ) dτ

− κ0ij(t) + (1− µi)
∑
k,l

t∫
0

Bκκ
ijkl(t− τ)κ0kl(τ) dτ

(6.28b)

with the pseudo loads p0i (t) and the virtual distortions κ0ij(t) in the roles of the
unknowns. Notice that the masses mi and the damage extents µi, which are to
be identified, occur in the kernels of the respective matrix integral operators
only in the form of constant scaling factors; as a result, these kernel needs
to be computed only once and does not have to be recomputed during the
identification process.
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6.3.2.2 Response of a damaged structure to moving masses

The pseudo loads and virtual distortions are obtained by solving (6.28). The
response of the kth sensor can be then computed as follows,

hk(t) =

Nm∑
i=1

t∫
0

Bhp
ki (t, τ)p

0
i (τ) dτ +

∑
i,j

t∫
0

Bhκ
kij(t− τ)κ0ij(τ) dτ. (6.29)

6.3.2.3 Time discretization

In practice, only the discrete-time counterparts of (6.27) to (6.29) are used.
The discrete response of the damaged structure subjected to moving loads is
expressed in a similar form as in (6.10), that is by

h = Bhpp0 +Bhκκ0, (6.30)

where the vectors h, κ0 and p0 respectively collect, for all time steps, the discrete
responses of all considered sensors, the discrete virtual distortions of all poten-
tially damaged elements and the pseudo loads that model all moving masses.
The matrices Bhp and Bhκ are the discretized counterparts of the corresponding
integral operators in (6.29) and take the forms of block matrices of respective
dimensions with lower-triangular blocks; the blocks in case of Bhκ are Toeplitz,
since the corresponding operator has a difference kernel.

Similarly, the vectors of the discrete accelerations a and distortions κ are
linearly dependent on the discrete pseudo load p0 and the discrete virtual dis-
tortions κ0, [

a
κ

]
=

[
Bap Baκ

Bκp Bκκ

] [
p0

κ0

]
, (6.31)

which is an aggregated discrete-time version of (6.27).
Finally, the aggregated discrete-time counterparts of (3.28b) and (6.21) take

the following forms:

p0 = m (g − a) , (6.32a)

κ0 = (I− µ)κ, (6.32b)

where m and µ are block diagonal matrices of respective dimensions with diag-
onal blocks, each of which has mi or µi on the diagonal, and g is the vector of
appropriate length of Earth’s gravities g. If (6.32) are substituted into (6.31),
they yield the following linear system, which is a counterpart of (3.33c):[

I+mBap mBaκ

(I− µ)Bκp (I− µ)Bκκ − I

] [
p0

κ0

]
=

[
mg
0

]
. (6.33)



6.3 Parametrization of loads 197

The building blocks of (6.30) to (6.33) are the matrices B(·)(·). These matrices
store all the necessary information about the dynamics of the structure and
are independent of the moving masses and the damage. Thus, given specific
values of the masses mi and the damage extents µi, the system (6.33) can be
quickly assembled without any numerical structural simulations and then solved
to obtain the pseudo loads and the virtual distortions, which are then substituted
into (6.30) to compute the response of the damaged structure excited by the
moving masses.

6.3.3 Identification

Assume that the discrete response hM of the damaged structure to unknown
moving masses is measured and available. According to the approach presented
in Section 6.2, the pseudo load p0 and the virtual distortions κ0 can be treated
as independent unknowns and found by solving the following version of (6.30):

hM = Bhpp0 +Bhκκ0 (6.34)

with respect to the unknown vectors p0 and κ0, which are then used in (6.31)
to compute the corresponding accelerations a and distortions κ. Finally, the
unknown masses and damages are estimated via a least-square fitting of (6.32).

This section pursues another approach which is more parametric in nature
and which treats the masses mi and the damage extents µi as independent
unknowns. These unknowns are used to determine the pseudo load p0, the
virtual distortions κ0 and finally the response h. In this way, the number of
unknowns is significantly reduced and thus fewer sensors are necessary and
the results are numerically more stable; however, it is at the cost of assuming
the damages to be of known types, such as the constant stiffness reduction
considered here.

6.3.3.1 Optimization variables

Basically, the inverse problem of identification of unknown masses and dam-
age parameters is formulated here as an optimization problem of minimization of
the normalized mean-square distance between the measured structural response
hM and the computed response h with respect to the optimization variables
mi and µi. These variables have very different magnitudes, which can seriously
impair the accuracy of many optimization procedures: the stiffness reduction
ratios µi belong to the interval [0, 1], while the masses mi might be as large
as several tens of thousands of kilograms. Moreover, while the damage extents



198 6. Simultaneous identification of damages and dynamic excitations

have a natural initial value of 1 (which corresponds to no damage), there is
no such a straightforward initial value for the moving masses. Thus, an initial
approximation mtr

i (called the trial mass) of each mass mi is first computed by
using a temporary assumption that the bridge structure is undamaged and by
approximating the pseudo loads with the moving gravities of the masses, that
is by solving in the least-square sense the following overdetermined system:

hM = Bhpmtrg, (6.35)

where mtr is the diagonal matrix of the same structure as m in (6.32a), but
includes the trial masses mtr

i on the diagonal.
Given the trial masses, the optimization problem is stated in dimensionless

variables µ⋆i , i = 1, . . . , Nm+Nµ, whereNµ is the number of potentially damaged
elements:

µ⋆i :=

{
mi

mtr
i

for i = 1, . . . , Nm,

µi−Nm for i = Nm + 1, . . . , Nm +Nµ,
(6.36)

which all have the natural initial value of 1 and are all of a comparable magni-
tude.

6.3.3.2 Objective function

Defined the set of dimensionless optimization variables µ⋆i , the identification
is stated in the form of the following optimization problem:

minimize F (µ⋆1, . . . , µ
⋆
Nm+Nµ

) :=
1

2

∥hM − h∥2

∥hM∥2
,

subject to µ⋆i ≥ 0, i = 1, . . . , Nm +Nµ,

(6.37)

where h is the response computed for the assumed values of the optimization
variables via (6.36), (6.33) and (6.30).

6.3.3.3 Sensitivity analysis

The process of identification is equivalent to the minimization of the ob-
jective function defined in (6.37). It can be quickly performed using standard
gradient-based optimization algorithms, provided the gradient can be computed
at a reasonable numerical cost. The discrete-time formulation based on (6.33)
and (6.30) allows the discrete adjoint method to be used [179, 180], which is
quicker by one order of magnitude in comparison to the standard direct differ-
entiation method [181].
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For the purpose of notational simplicity, (6.30) and (6.33) and their first
derivatives with respect to the variable µ⋆i are stated in the following simple
aggregate forms:

P(µ⋆)ν0 = b, (6.38a)

P(µ⋆)ν0
i = bi −Pi(µ

⋆)ν0, (6.38b)

h = Bhν0, (6.38c)

hi = Bhν0
i , (6.38d)

which are respectively the counterparts of (3.33c), (3.53), (3.33b) and (3.51),
and where

P(µ⋆) =

[
I+mBap mBaκ

(I− µ)Bκp (I− µ)Bκκ − I

]
, (6.39a)

b =
[
mg 0

]T
, (6.39b)

Bh =
[
Bhp Bhκ ] , (6.39c)

ν0 =
[
p0 κ0

]T
, (6.39d)

and the subscript i denotes the first derivative with respect to µ⋆i . The objective
function is directly differentiated to obtain

Fi = −
(
hM − h

)T
∥hM∥2

Bhν0
i , (6.40)

which involves the first derivatives ν0
i of the virtual distortions and pseudo loads.

The direct differentiation method computes ν0
i by solving (6.38b); for the full

gradient, the solution has to be repeated Nm +Nµ times, that is once for each
optimization variable µ⋆i . The discrete adjoint method adds to (6.40) the scalar
product of an adjoint vector λ with (6.38b) and collects together all the terms
that include ν0

i to obtain

Fi = λT (Pi(µ
⋆)ν0 − bi

)
+

(
λTP(µ⋆)−

(
hM − h

)T
∥hM∥2

Bh

)
ν0
i . (6.41)

In this way, the first derivative of the objective function is stated as

Fi = λT (Pi(µ
⋆)ν0 − bi

)
, (6.42)
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where the adjoint vector λ is selected in such a way that the second term in
(6.41) vanishes, that is at the cost of only a single solution of the adjoint equation

PT
i (µ

⋆)λ =
(
Bh)T (hM − h

)
∥hM∥2

. (6.43)

The second order sensitivity analysis can be also based on the discrete direct-
adjoint method, see Subsections 3.4.3.2 and 4.2.3.2.

6.3.3.4 Numerical procedures

In principle, if a small number of the time steps is used, the system ma-
trix in (6.33) is of moderate dimensions and its inverse can be computed using
direct methods. However, in off-line identification, in the case of a dense time
discretization or a longer sampling time, the system can become prohibitively
large and computationally hardly manageable in a direct way. In such cases,
the system matrix, which is a structured block matrix composed of lower tri-
angular matrices (of which not all are Toeplitz, unlike in previous chapters),
can be rearranged into the lower triangular block form that can be exploited by
a specialized linear solver (like block forward-substitution or dynamic program-
ming [69, 73]) to reduce the numerical costs of the solution. Despite the inherent
ill-conditioning of the system, application of such a solver is facilitated by the
fact that both the matrix and the right-hand side vector are computed based
on the FE model of the structure, and so they include only numerical errors,
which are usually several orders of magnitude smaller than measurement errors.
On the other hand, the left-hand side vector of (6.34) contains the measurement
data and hence it can include significant measurements errors. Alternatively, an
iterative solver might be considered, such as the CGLS method [128].

Furthermore, given the FE model of the undamaged structure, the proposed
method can be used online by a repetitive application in a moving time window,
that is basically in the same way as described in Subsection 6.2.3.

Notice also that, if the system parameters are known, the virtual distortions
in (6.30) vanish, and the method can be employed also for identification of the
moving masses only.

6.3.4 Numerical example

A multi-span frame structure is used to validate the proposed method for
simultaneous identification of moving masses and damage. Measurement error
and three types of model errors are taken into account in order to test the
robustness of the method.
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6.3.4.1 The structure and moving masses

Figure 6.14 shows a scheme of the considered three-span frame structure. It is
made of steel with Young’s modulus of 215 GPa and a density of 7.8×103 kg/m3.
The mass is uniformly distributed at the rate of 15.3×103 kg/m. The beam has
a rectangular cross-section b×h = 0.89 m × 2.21 m, so that its second moment
of area is 0.8 m4. The structure is 200 m long in total, while each of the two
side spans is 50 m long. Each of the two piers is 20 m high and has the second
moment of area of 0.16 m4.

Figure 6.14. The damaged three-span frame structure and three moving masses.

It is assumed that three moving masses,

m1 = 71.2× 103 kg, (6.44a)

m2 = 60.0× 103 kg, (6.44b)

m3 = 53.0× 103 kg, (6.44c)

pass over the structure with constant velocities of 34 m/s, 34 m/s and −30 m/s
respectively. The initial positions of the masses are −3 m, 0 m and 200 m,
respectively. Three strain sensors are employed for collecting the measurements:
s1 at the location of 65.2 m, s2 at 95.2 m and s3 at 145.2 m, see Fig. 6.14. The
sensors are placed at the bottom surface of the beam, so that their distance to
the neutral axis is 0.5h = 1.105 m.

6.3.4.2 Measurement errors and model errors

Measurement errors of the simulated measurement data hM are modeled by
adding an uncorrelated Gaussian noise at kn rms level, that is

hM ← hM + knη
∥hM∥√
NrNt

, (6.45)
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where Nr and Nt are respectively the numbers of the sensors and of the time
steps, and η is a column vector of the same length as hM (that is NrNt), whose
elements are random numbers independently drawn from N(0, 1). Altogether,
three noise levels are used: kn ∈ {0%, 5%, 10%}.

Model errors are inevitable in practice. The influence of modeling errors is
tested below by using two different FE models of the structure: one for identifi-
cation purposes and a different one for the generation of the simulated measure-
ments. For identification purposes, the beam is divided into 20 finite elements
of 10 m each, and each of the two piers is divided into two elements of 10 m
(the original mesh). These values are chosen based on Law et al. [105], where
it is tested that a minimum of eight finite elements have to be used to model
a typical single-span bridge deck for moving load identification. As described
above, the moving masses are assumed to attach directly to the beam. This
model is modified in order to generate the simulated measurements. The three
following types of modifications are concurrently considered:

Type I Modification of the stiffness of all the elements. More precisely, uncorre-
lated Gaussian modifications with mean −2% and the standard deviation
of 5% are used, as due to both aging and initial model inaccuracies.

Type II A damped mass–spring vehicle model (Kelvin–Voigt element) is used
instead of the simple moving mass, see Fig. 6.15.

Type III A four times finer finite element mesh is used for simulation of the
measurements, that is each of the 10 m elements is further divided into
four equal elements of 2.5 m.

Figure 6.15. Type III model error: a mass–spring vehicle model is used instead of a simple
moving mass.
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For Type II model error, the parameters of the vehicle models are chosen
as in [281, 282]: the stiffness ki = 286 × 106 N/m and the damping ci =
2.8 × 106 Ns/m, i = 1, 2, 3. Figure 6.16 compares the responses obtained us-
ing the original undamaged structure, as well as the same structure with Type
III model error and with Type II+III model errors. For a flat beam considered
here, the discrepancies between the responses obtained from the mass–spring
vehicle model and those from the simple mass model are small. Similarly, no-
ticeable effects of element mesh, like Type III model error, occur only at the
times when the vehicles pass directly over the sensors: the finer mesh better
reflects the local high-frequency components of the response. These local vibra-
tions decay soon after the vehicle passes over the sensor. Therefore, in order
to improve the accuracy and decrease the influence of Type III model error,
the local vibrations can be removed from the measurements by modifying the
original objective function in (6.37) as follows:

F (µ⋆1, . . . , µ
⋆
nm+ne) :=

1

2

∥(diagw)
(
hM − h

)
∥2

∥(diagw)hM∥2
, (6.46)
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Figure 6.16. Responses of the undamaged system simulated using different meshes and vehicle
models: (top left) sensor S1; (top right) sensor S2; (bottom) sensor S3.
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where w is a binary weighting vector, which contains only 1s with the exception
of the time steps at which the vehicles are within a certain distance from any
of the sensors (±2.5 m is used here).

6.3.4.3 Identification cases

The following set of six cases is taken into account for a thorough test of the
presented method:
Case 1 The structure is assumed to be undamaged. Only the three moving

masses are identified. Measurement error of the undamaged structure is
simulated at 0% and 5% rms level. No model error is assumed.

Case 2 Two pier elements (No. 21 and 23) are damaged with the damage ex-
tents

µ21 = 0.4 µ23 = 0.7, (6.47a)

while the other two pier elements remain undamaged,

µ22 = 1.0 µ24 = 1.0. (6.47b)

The moving masses and the damage extents are identified simultaneously.
The damage location is limited to the four pier elements of the original
mesh, so that four stiffness modification coefficients are used in optimiza-
tion, besides the three variables related to the masses. In this way, the
exact number of the damaged elements and their locations are treated as
unknown and also identified. Measurement error is simulated at 5% rms
level; no model error is used.

Case 3 As in Case 2, but Type I model error is additionally simulated, see
Fig. 6.17a.

Case 4 As in Case 2, but model error Type II+III is used, that is the finer mesh
and the mass-spring vehicle model are used to generate the simulated
measurements, and no measurement error is considered. Identification of
masses and damages is performed via (6.37), that is using all the responses
without removing the local vibrations.

Case 5 As in Case 4, but local vibrations are removed from the responses via
(6.46) and measurement error is simulated at 5% rms level.

Case 6 As in Case 5, but all model errors (Type I+II+III) are used concur-
rently, see Fig. 6.17b for the stiffness modifications, and measurement
error is simulated at 10% rms level. Local vibrations are removed from
the responses via (6.46).



6.3 Parametrization of loads 205

1 5 10 15 20 24
0

20

40

60

80

100

element no.

st
if

fn
es

s
ra

tio
Μ
@%
D

1 20 40 60 80 96
0

20

40

60

80

100

element no.

st
if

fn
es

s
ra

tio
Μ
@%
D

Figure 6.17. Stiffness reduction levels of the elements: (top) original mesh (Type I model
error); (bottom) fine mesh (Type I+III model error).

Notice that in Cases 3 and 6 model error Type I is simulated. In these cases,
the damage extents (6.47a) relate to the element stiffnesses in the modified
model, and the actual (to-be-identified) damage extents in Cases 3 and 6 are
slightly different, since they include also the model error besides the damage,
see Tables 6.8 and 6.9.

In all cases, the structural response is calculated using the Newmark in-
tegration method with the parameters γ = 1/4 and β = 1/2 [145–148]. The
integration time step equals 0.01 s (100 Hz sampling frequency). A total of 200
time steps is used; the sampling time interval is thus 2 s. The simulated noisy
sensor responses in Case 1 and Case 2 are shown in Fig. 6.18.

6.3.4.4 Identification results

In the following, the results are discussed for the six mentioned cases. The
results of mass identification are assessed by their relative accuracy, while the
results of damage identification are more naturally assessed in terms of their
absolute accuracy (percentage points).
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Figure 6.18. Simulated strain responses of the damaged and the intact systems in identification
Case 1 and Case 2. Simulated measurement noise at 5% rms level.

Moving masses (Case 1). First, the three moving masses are identified using
a direct solution of (6.34), where the virtual distortions κ0 are assumed to van-
ish2. For a unique solution, at least three sensors are required. The pseudo loads
p0 are computed separately for the noise-free and the noise-contaminated mea-
surements, see the left- and right-hand sides of Fig. 6.19. The truncated singular
value decomposition is used for regularization; the corresponding regularization
levels (the number kTSVD of the truncated singular values) were determined us-
ing the L-curve technique [67, 135], that is by weighing in the log-log scale the
residual of (6.34) vs. the norm of the first differences of the unknown pseudo load
∥Lp0∥ and selecting the corner point. The L-curves are depicted in the top row
of Fig. 6.19; they confirm that the equation (6.34) is seriously ill-conditioned.
Moreover, consistently large values of the regularizing term ∥Lp0∥ suggest that
it is impossible to obtain accurate results even at the optimum regularization
level. In the noise-free case, the optimum regularization level is kTSVD = 29.
The corresponding pseudo loads are computed and shown in Fig. 6.19 (bottom
left); their end parts diverge from the actual mass-equivalent pseudo loads. With
5% noise contamination, the pseudo load is computed at the optimum value of
kTSVD = 269 and shown in Fig. 6.19 (bottom right); both the front and the
end parts diverge very significantly from the actual values. Table 6.5 lists the

2This corresponds to the standard approach in which a nonparametrized moving force is
identified directly.
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Figure 6.19. Case 1, three sensors. Moving load identification by a direct solution of (6.34): (top
left) L-curve, noise-free measurements; (top right) L-curve, 5% rms measurement noise; (bot-
tom left) computed pseudo loads, noise-free measurements; (bottom right) computed pseudo
loads, 5% rms measurement noise. L is the matrix of the first differences. „computed i” and
„actual i” denote the ith computed and actual pseudo load.

masses identified by least-square fitting of (6.21), where the accelerations are
computed via (6.31). Given the large oscillations of the pseudo loads in the 5%-
noise case, the identification errors are surprisingly small. However, the largest
20% error of the identified mass m1 confirms that the results can be sensitive
to the disturbances and noise in the measured response.

In comparison, the identification via (6.37) exploits the physical constraints
imposed on the pseudo loads (which are required to be mass-equivalent) and
hence turns out to be more robust to noise. Moreover, the masses are accurately
identified using a single sensor only (s1); the results are listed in Table 6.6.
The initial trial values of the moving masses are computed by (6.35); in each
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Table 6.5. Case 1. Identified masses and relative identification errors. Identification by (6.34)
based on three sensors, (6.21) and (6.31).

Noise free 5% noise
Actual

identified error identified error[103 kg]
[103 kg] [%] [103 kg] [%]

m1 71.2 70.56 0.90 56.62 20.48
m2 60.0 60.23 0.38 62.08 3.47
m3 53.0 52.72 0.53 53.16 0.30

Table 6.6. Case 1. Identified masses and relative identification errors. Identification by (6.37)
and (6.35) based on a single sensor (s1).

Noise free 5% noise
Actual

trial identified error trial identified error[103 kg]
[103 kg] [103 kg] [%] [103 kg] [103 kg] [%]

m1 71.2 69.82 71.2013 0.0018 68.30 71.42 0.31
m2 60.0 58.98 60.0003 0.0005 59.04 59.17 1.38
m3 53.0 43.45 52.9995 0.0010 41.33 53.81 1.53

optimization step, the pseudo load p0 is calculated using the moving dynamic
influence matrix Bap by (6.33), which reduces to

(I+mBap)p0 = mg. (6.48)

Figure 6.20 compares the pseudo loads identified using the noise-contaminated
measurements to the actual pseudo loads; the results are very satisfactory even
though 5% rms noise is used, especially in comparison to Fig. 6.19 (bottom
right).

Moving masses and damages (Cases 2–6). The damage is limited to the
two piers, that is to the respective four finite elements of the original mesh.
Together with the three moving masses (mass modification coefficients), seven
variables have thus to be identified by minimizing the objective function (6.37)
or (6.46). Responses of only two sensors are used for that purpose (s1 and s3);
the initial trial mass values are estimated via (6.35).

The results of identification in Case 2 (5% measurement noise, no model
error) are listed in Table 6.7. The three moving masses and four potential dam-
ages are identified accurately. As only two actual damages were simulated, the
optimization allowed also their number and location to be identified as well,
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Figure 6.20. Case 1, single sensor s1, 5% measurement noise. Pseudo loads, actual and iden-
tified by (6.37); „computed i” and „actual i” denote the ith computed and actual pseudo
load.

Table 6.7. Case 2. Masses and damage parameters identified via (6.37).

Actual Trial Identified Error [%]
m1 [103 kg] 71.2 94.36 68.88 3.26
m2 [103 kg] 60.0 46.27 60.63 1.05
m3 [103 kg] 53.0 60.52 52.24 1.43

µ21 0.40 — 0.38 2.23
µ22 1.00 — 1.00 0.00
µ23 0.70 — 0.68 2.27
µ24 1.00 — 0.96 3.80

even if limited to the four considered pier elements. The results are relatively
insensitive to the measurement error.

The results of identification in Cases 3 and 4 are listed in Table 6.8. They
confirm that the model error of Type I (modified stiffness of finite elements) does
influence the accuracy of damage identification (Case 3), but both the damage
and the moving masses can still be identified with an acceptable accuracy even
with the additional measurement error. For the model error of Type III (finer
mesh), coupled with Type II error (mass–spring vehicle model), the direct use
of the simulated measurements in (6.37) results in poor accuracy even without
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Table 6.8. Cases 3–4. Masses and damage extents identified via (6.37).

Case 3 Case 4
actual identified error [%] actual identified error [%]

m1 [103 kg] 71.2 66.71 6.31 71.2 95.00 33.42
m2 [103 kg] 60.0 60.88 1.47 60.0 45.84 23.60
m3 [103 kg] 53.0 51.87 2.14 53.0 62.04 17.06

µ21 0.398 0.343 5.52 0.40 0.529 12.86
µ22 1.012 1.000 1.22 1.00 0.997 0.27
µ23 0.666 0.635 3.06 0.70 0.997 29.73
µ24 0.977 0.967 0.98 1.00 1.000 0.00

Table 6.9. Cases 5–6. Masses and damage extents identified via (6.46).

Case 5 Case 6
actual identified error [%] actual identified error [%]

m1[103 kg] 71.2 73.72 3.54 71.2 77.58 8.96
m2[103 kg] 60.0 56.45 5.91 60.0 56.34 6.11
m3[103 kg] 53.0 52.27 1.38 53.0 53.23 0.43

µ21 0.40 0.356 4.36 0.382 0.379 0.29
µ22 1.00 1.000 0.00 0.970 1.000 3.03
µ23 0.70 0.637 6.33 0.692 0.647 4.47
µ24 1.00 0.963 3.75 0.936 0.980 4.36

any measurement error (Case 4). However, simple filtering of the local vibrations
via (6.46) significantly improves the accuracy to the level attained with Type I
model error (Case 5, 5% measurement error included, see Table 6.9). These
results suggest that in practice (6.46) should be always preferred over (6.37).

In the last test (Case 6), all three types of model errors are used together
with the measurement error at 10% rms level. The identification is performed
via (6.46). The results are listed in Table 6.9, where each actual damage extent
is computed as an average of the damage extents of the four involved elements
of the finer mesh. Given all the simulated errors, the results are of acceptable
accuracy and not significantly worse than in the previous cases.
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Load identification in elastoplastic
structures

Chapter 2 discusses the problem of identification of dynamic excitations in linear
structures. In particular, it offers a methodology of identification that is suited
for the case of a limited number of sensors (fewer than required for a unique
identification). That approach, as most of the others available in literature, see a
review in Subsection 2.1.2, deals with linear structures and is based on a solution
or an approximation of a solution to an ill-conditioned linear inverse problem.
There is only a handful of reports on identification of dynamic loads in nonlinear
structures [84, 89], including material [32] or geometric [90] nonlinearities.

The virtual distortion method is an effective tool for modeling of local struc-
tural modifications and damages, see Chapter 3. In a similar way, the VDM can
be employed for fast modeling of material nonlinearities or inelasticities through
the related distortions, such as plastic distortions, see, e.g., [28, 32, 161]. Basi-
cally, two general approaches are possible:

1. The distortions can be identified together with (and independently of) the
unknown excitation in a standard linear identification procedure. Such an
approach is used in Section 6.2 for simultaneous identification of excita-
tion loads and unknown structural damages. An advantage is that the
model of the nonlinearity can be unknown and might be identified to-
gether with the excitation; a disadvantage is that all the distortions have
to be treated as independent and consequently an a priori precise infor-
mation about the localization of damages is necessary in order to keep
the necessary number of sensors reasonably small.

2. If the model of the nonlinearity and its parameters are known before-
hand, its influence on the structural response can be modeled using the
standard approach of the VDM. The excitations can be then treated as
the only unknowns. An obvious advantage of such an approach is that,
given the model, the distortions can be uniquely determined based on
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the excitations; in this way, the number of sensors required for a unique
identification is reasonably small and no prior information on the local-
ization of nonlinearities is required. On the other hand, the model of the
nonlinearity must correspond to the actual nonlinearities to ensure that
meaningful results are obtained. Moreover, since the structure is no longer
linear, the identification ceases to be equivalent to solving a linear inverse
problem.

This chapter considers elastoplastic structures and the well-defined model of
the bilinear isotropic hardening plasticity [283]. It is assumed that the model
parameters (yield stress and hardening coefficient) are known, and the second
from the above approaches is thus used. Plastic yield is modeled using plastic
distortions, which are imposed on the linear structure and processed using the
standard methodology of the VDM. Plastic distortions depend on the structural
response in a nonlinear way, and thus they cannot be represented in the form of
a solution to a linear integral equation such as (3.32). Instead, the formulation
leads to a nonlinear integro-differential equation. Casting the problem in the
discrete-time setting yields a relatively simple updating rule for plastic distor-
tions, which is a version of the return-mapping algorithm [283] and which allows
the solution to be advanced time step by time step and at a low cost without a
typical iteration with respect to state variables.

Given the material model, the structural response depends uniquely on the
assumed excitation and can be compared to the measured response for the
purpose of identification of the unknown excitation. The direct differentiation
method is applied to the discrete formulation to derive analytical formulas for
the gradients of the response with respect to the unknown excitations, which
allows any general-purpose gradient-based optimization approach to be used in
a fast identification. The identification is essentially a least-squares problem,
hence its Hessian can be approximated along the lines of the Gauss–Newton
approach. As usual in the VDM, the structure, although materially nonlinear,
is assumed to be geometrically linear.

For notational simplicity (and as in Section 6.2) only truss structures and
strain sensors are considered here. With conceptually inessential modifications,
the concept is applicable to other types of structures and linear sensors. Trusses
are used here, since they are the simplest to describe: each element is associated
with only one (axial) plastic distortion state, while already three states are
necessary for a frame element (axial, pure bending and bending/shear) and
even more for other elements, see Subsection 3.2.1. Nevertheless, the governing
equations remain basically the same, although other structures can require more
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variables and hence be notationally and computationally more demanding. The
strain response is used for identification because of its straightforward relation
to the plastic distortion of a truss element.

7.1 Bilinear isotropic hardening plasticity

Let εi(t) denote the total strain of the ith truss element. It can be split into
two parts: a purely elastic part and a plastic part, which is denoted by β0i (t).
The stress σi(t) of the ith element is thus expressed as

σi(t) = Ei(εi(t)− β0i (t)). (7.1)

In the following only bilinear isotropic hardening plasticity is considered as
a relatively basic example, see Fig. 7.1, which requires for each element a single
internal hardening variable Ψi(t) called the total plastic strain. The evolution of
Ψi(t) in time is governed by the following simple strain hardening law:

Ψ̇i(t) := |β̇i(t)|. (7.2)

The yield function Φi(σi,Ψi) is defined as

Φi(σi,Ψi) := |σi| −
(
σ⋆i +

γiEi

1− γi
Ψi

)
(7.3a)

Figure 7.1. Constitutive relation for the bilinear isotropic hardening plasticity.
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where σ⋆i , γi and Ei are respectively the initial plastic flow stress, the hardening
coefficient and Young’s modulus of the ith truss element, and the plastic modu-
lus γiEi/(1− γi) is determined based on a simple geometric analysis of Fig. 7.1.
The range of admissible stresses is defined by the requirement that

Φi(σi,Ψi) ≤ 0. (7.3b)

The plastic flow (β̇0i ̸= 0) can take place only if the stress point is and persists
on the yield surface defined by Φi = 0. This is stated in the form of the following
conditions of complementarity and persistency [283]:

β̇0i (t)Φi(t) = 0, (7.4a)

β̇0i (t)Φ̇i(t) = 0, (7.4b)

where
Φi(t) := Φi(σi(t),Ψi(t)). (7.5)

The yield function is used to define the set Yt of indices of truss elements that
are instantaneously plastic at time t,

(i ∈ Yt) ≡ (Φi(t) = 0 and Φi(t) = 0) . (7.6)

Other plasticity models can be relatively easily obtained by increasing the
number of the internal variables [283].

7.2 The direct problem

7.2.1 Continuous formulation

According to the VDM, plastic strain β0i (t) of the ith truss element is iden-
tified with its plastic distortion. The response of the structure depends on the
external excitation loads as well as on the plastic distortions. Assuming zero
initial conditions, similar as in (3.29) or (6.9), the strain response εi(t) of the
ith element of the elastoplastic truss is expressed as follows:

εi(t) = εLi (t) +
∑
j

t∫
0

Bκκ
ij (t− τ)β0j (τ) dτ, (7.7a)

where

εLi (t) =
∑
k

t∫
0

Bκf
ik(t− τ)f0k (τ) dτ, (7.7b)
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and εLi (t) is the strain response of the ith element in the corresponding purely
linear structure, f0k (t) is the external excitation load applied in the kth DOF,
and Bκf

ik(t) and Bκκ
ij (t) collect the respective impulse response functions of the

linear system. Equation (7.15a) seems to be linear at first, but it is not, and the
obvious reason is that the plastic distortions β0j (t) are nonlinearly dependent
on the excitations f0k (t): only the excitations can be treated as independent
input variables, while the plastic distortions have to be updated according to
the assumed material model.

Equation (7.7a) is a version of the first basic equation of the VDM, (3.1). The
counterpart to the second crucial equation of the VDM, (3.3), is obtained by
comparing two following expressions for the stress rate σ̇i(t) of instantaneously
plastic elements, i ∈ Yt:

1. The first expression is obtained by a differentiation of (7.1) with respect
to time,

σ̇i(t) = Ei(ε̇i(t)− β̇0i (t)), (7.8)

and it is valid for all truss elements.
2. The second expression is obtained by noticing that the stresses of instan-

taneously plastic elements persist on the yield surface, which is expressed
in (7.6) as

∂

∂t
Φi(t) = 0. (7.9)

Substitution of the yield function (7.3a) and an explicit differentiation
leads to

σ̇i(t) sign σi(t) =
γiEi

1− γi
Ψ̇i(t)

=
γiEi

1− γi
|β̇0i (t)|,

(7.10)

where the second equality follows from the hardening law (7.2). It is noted
that the stress direction must be the same as the direction of the plastic
flow,

sign σi(t) = sign β̇0i (t), (7.11)

which is multiplied side by side with (7.10) to obtain

σ̇i(t) =
γiEi

1− γi
β̇0i (t), (7.12)

which is valid only if i ∈ Yt, that is for elements instantaneously plastic
at time t.
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Comparison of (7.8) and (7.12) yields the following evolution rule for the plastic
distortions of instantaneously plastic elements, i ∈ Yt:

β̇0i (t) = (1− γi)ε̇i(t), (7.13)

which is intuitively clear also from a purely geometric consideration of Fig. 7.1.
Notice that the plastic distortions of instantaneously elastic elements remain
constant due to (7.4), that is β̇0i (t) = 0 if either Φi(t) = 0 or Φ̇i(t) = 0. Thus, by
taking additionally into account the hardening law (7.2), the following rule can
be formed to describe the evolution of the plastic distortions and total plastic
strains:

β̇0i (t) = (1− γi)ε̇i(t)Ii∈Yt , (7.14a)

Ψ̇i(t) = |β̇0i (t)|, (7.14b)

where Ii∈Yt is the indicator function (2.64), the set Yt of instantaneously plastic
elements is determined based on the total plastic strain Ψi(t) as defined in (7.6),
and the strain rate ε̇i(t) is obtained by differentiating (7.7a),

ε̇i(t) = ε̇L(t) +
∑
j

Bij(0)β
0
j (t) +

∑
j

t∫
0

Ḃij(t− τ)β0j (τ) dτ

= ε̇L(t) +
∑
j

t∫
0

Ḃij(t− τ)β0j (τ) dτ,

(7.14c)

where the second equality follows from the fact that the strain does not change
stepwise and thus Bij(0) = 0, see (2.6). Equations (7.14a) express the current
rate β̇0i (t) of plastic distortions in terms of their past values β0i (τ), τ ≤ t, and
form thus an integro-differential equation, which is a specific form of the general
equation of the VDM (3.4) and a counterpart to its other specific forms such as
(3.28) or (5.6b). However, unlike them, (7.14a) is nonlinear due to the presence
of the indicator function and the definition of Yt. Theoretically, (7.14) could be
integrated numerically to obtain the plastic distortions, which would be then
substituted into (7.7a) to obtain the response.

7.2.2 Discrete-time setting

In practice, the response of the linear structure εLi (t) is known in discrete time
steps every ∆t, and the numerical solution for the elastoplastic structure has
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to be advanced in the same discrete time steps. The procedure described below
is a version of the classical return-mapping algorithm [283], whose standard
implementation requires in each time step an iteration with respect to structural
response. Here, application of the VDM in the form of (7.15a) allows such an
iteration to be avoided.

Basically, a numerical integration scheme could be applied to (7.14) in order
to obtain a set of stepping equations, which would explicitly describe the evo-
lution of the plastic distortions in successive time steps. However, the indicator
function in (7.14a) makes the plastic flow β̇0i (t) of the ith element discontinuous
at the time instances, when the element enters or leaves the plastic regime. Such
a discontinuity seriously undermines the approximation accuracy of numerical
integration schemes. Thus, a derivative-free formulation is used here: the up-
date rule for the plastic distortions in the discrete-time setting is obtained by
an analysis of the stresses of the instantaneously plastic elements instead of their
stress rates.

7.2.2.1 Response of the elastoplastic structure

The discrete strain response of the elastoplastic structure is expressed in the
following discrete form of (7.7a):

εi(t) = εLi (t) +
∑
j

t∑
τ=0

Dκκ
ij (t− τ)β0j (τ), (7.15a)

where

εLi (t) =
∑
k

t∑
τ=0

Dκf
ik(t− τ)f0k (τ), (7.15b)

while Dκf
ik(t) and Dκκ

ij (t) are the discrete counterparts of the continuous impulse
response functions Bκf

ik(t) and Bκκ
ij (t).

7.2.2.2 The update rule for plastic distortions

The backward Euler integration scheme is applied only to the to the harden-
ing law (7.14b). This is unavoidable despite the discontinuity of β̇0i (t), because
the hardening law is originally defined in (7.2) using a time derivative. The
following discrete-time counterpart is obtained:

Ψi(t) := Ψi(t−∆t) + |∆β0i (t)|, (7.16)
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where ∆βi(t) denotes the increment of the plastic strain,

∆β0i (t) := β0i (t)− β0i (t−∆t). (7.17)

The update rule for the these increments is obtained in the following analysis of
the stresses of instantaneously plastic elements. The continuous evolution rule
(7.14a) is not directly integrated for the reasons discussed above.

Trial elastic step. As in the classical return-mapping algorithm [283], the plas-
tic distortion increments ∆β0i (t) are determined in each time step t by freezing
temporarily the plastic flow and performing a purely elastic step, which yields
the trial strain εtri (t), trial stress σtr

i (t) and trial yield function Φtr
i (t).

The trial step is performed by assuming that

β0tri (t) := β0i (t−∆t),

Ψtr
i (t) := Ψi(t−∆t).

(7.18)

Together with (7.15a), it yields the following formula for the trial strain:

εtri (t) := εLi (t) +
∑
j

t−∆t∑
τ=0

Dκκ
ij (t− τ)β0j (τ) +

∑
j

Dκκ
ij (0)β

0tr
j (t)

= εLi (t) +
∑
j

t−∆t∑
τ=0

Dκκ
ij (t− τ)β0j (τ) +

∑
j

Dκκ
ij (0)β

0
j (t−∆t).

(7.19)

By analogy to (7.1), the trial stress is obtained as

σtr
i (t) := Ei

(
εtri (t)− β0tri (t)

)
= Ei

(
εtri (t)− β0i (t−∆t)

)
.

(7.20)

The corresponding trial yield function is given by

Φtr
i (t) := Φi(σ

tr
i (t),Ψ

tr
i (t))

= |σtr
i (t)| −

(
σ⋆i +

γiEi

1− γi
Ψi(t−∆t)

)
.

(7.21)

Notice that all trial values are fictitious and do not coincide with the actual
values, unless the actual step is indeed purely elastic for all elements.
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Actual strain, yield function and stress. According to (7.15a) and (7.19),
the actual strain can be expressed in terms of the trial strain and plastic dis-
tortion increments as

εi(t) = εtri (t) +
∑
j

Dκκ
ij (0)∆β

0
j (t). (7.22)

Similarly, (7.21) and (7.16) can be used to express the actual yield function in
terms of the trial yield function and plastic distortion increment,

Φi(t) = Φtr
i (t) + |σi(t)| − |σtr

i (t)| −
γiEi

1− γi
|∆β0i (t)|. (7.23)

In Subsection 7.2.1, the continuous evolution rule (7.14a) for plastic distor-
tions is obtained by comparing two formulas for stress rates of instantaneously
plastic elements. Here, a similar analysis is followed, but the stresses are ana-
lyzed instead of the stress rates. Given the trial stress, the actual stress σi(t)
of the ith instantaneously plastic element at time t can be expressed in two
different ways:

1. Equation (7.1) yields,

σi(t) = Ei

εtri (t) +∑
j

Dκκ
ij (0)∆β

0
j (t)− β0i (t)


= Ei

εtri (t) +∑
j

Dκκ
ij (0)∆β

0
j (t)− β0i (t−∆t)−∆β0i (t)


= σtr

i (t) + Ei

∑
j

(
Dκκ

ij (0)− δij
)
∆β0j (t),

(7.24)

where the three equalities follow respectively from (7.22), (7.17) and
(7.20), and δij is the Kronecker delta.

2. The stress of an instantaneously plastic element, i ∈ Yt, must reside on
the yield surface, Φi(t) = 0, which is substituted in the left-hand side of
(7.23) to obtain the following formula:

|σi(t)| = −Φtr
i (t) + |σtr

i (t)|+
γiEi

1− γi
|∆β0i (t)|. (7.25)

The actual stress, the trial stress and the plastic flow of an instantaneously
plastic element are all of the same sign [283],

signσi(t) = signσtr
i (t) = sign∆β0i (t). (7.26)
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Equation (7.25) is multiplied by signσi(t), which due to (7.26) leads to

σi(t) = −Φtr
i (t) signσtr

i (t) + σtr
i (t) +

γiEi

1− γi
∆β0i (t) (7.27)

Actual increments of plastic distortions. Equations (7.24) and (7.27) are
combined together to yield the following equation:

Ei

∑
j∈Yt

(
Dκκ

ij (0)−
δij

1− γi

)
∆β0j (t) = −Φtr

i (t) signσtr
i (t), (7.28)

which is valid only for instantaneously plastic elements, that is for i ∈ Yt. Col-
lected for all such elements, (7.28) constitutes a system of linear equations with
the increments ∆βi(t) of the plastic distortions in the role of the unknowns.
Notice that the elements of the system matrix in (7.28) are constant and inde-
pendent of the current state of the structure; they can be thus precomputed for
all elements to obtain the full matrix and facilitate the simulation. In each time
step, the rows and columns can be then simply selected according to the set Yt of
the instantaneously plastic elements. If in each time step only a limited number
of elements are instantaneously plastic, the system (7.28) is small in dimensions
and computationally inexpensive. The set Yt is updated in each time step by
verifying the yield condition (7.3b) and the stress compliance condition (7.26).

7.2.2.3 Scheme of computations

In the discrete-time setting, the direct problem is solved time step by time
step, that is for t = 0,∆t, . . . , T . The initial conditions are usually assumed to
be zero,

εi(0) = 0, β0i (0) = 0, Ψi(0) = 0, Y0 = ∅. (7.29)

In each successive time step t = ∆t, . . . , T , the following computations are
necessary:

1. Trial strains, stresses and yield functions by (7.19), (7.20) and (7.21).
2. Temporary assumption of Yt := Yt−∆t.
3. Plastic distortion increments ∆β0i (t) by (7.28).
4. The corresponding strains and stresses by (7.15a) and (7.1).
5. For all elements, verification of the yield condition (7.3b) and its compli-

ance with the assumed set Yt of instantaneously plastic elements. Veri-
fication for i ∈ Yt of the stress compliance condition (7.26). If required,
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the set Yt is accordingly updated and the computations are repeated back
from point 3 above.

6. Plastic strain increments and total plastic strains by (7.17) and (7.16).
Notice that no iteration with respect to the state variables is required, which is
a characteristic feature of the presented approach. Points 3–5 are repeated only
if the set Yt needs to be updated in the current time step, which happens only
when an elastic element enters the plastic regime or an instantaneously plastic
element is unloaded; the proper set is then usually found after just a single
update.

7.3 The inverse problem

Depending on the availability of the material model and on the number of
the available sensors, the three following general cases are possible:
Strongly overdetermined problem. The number of sensors is not smaller

than the total number of the potentially excited DOFs and yielding ele-
ments. In practice, this is possible only in the case of a very limited num-
ber of excited DOFs and a very localized plastic flow zone; an a priori in-
formation about the location of excitations and damages is thus required.
The approach described in Section 6.2, or in Chapter 2 for overdetermined
linear systems, is applicable with the external excitation loads f0(t) and
the plastic distortions β0(t) treated together as independent unknowns.
Knowledge of the material model is not required.

Overdetermined problem. The number of sensors is not smaller than the num-
ber of potentially excited DOFs. The unique time-history of the excitation
can be identified using a dedicated approach, such as the one presented
below. The approach from Chapter 2 is not applicable, since the system
is not linear.

Underdetermined problem. Fewer sensors than potentially excited DOFs. In
general, the gradient-based optimization approach presented below iden-
tifies a nonunique excitation, which is observationally indistinguishable
from the actual excitation. Tikhonov regularization or other problem-
specific conditions such as the nonnegativity requirement can be used to
additionally constrain the solution space.

Notice that the problem can happen to be singular and effectively underdeter-
mined even with sufficiently many sensors, which is then due to specific topology
of the structure and placement of the excitations and sensors.
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The first approach amounts to an inverse linear problem that has been dis-
cussed in Chapter 2 and in Section 6.2. In the following, it is thus assumed
that the model of the elastoplasticity is known in advance, so that only excita-
tions f0(t) are treated as independent unknowns. In such a case, both the direct
and the inverse problems are nonlinear and require dedicated approaches. The
discrete-time setting is used as more accurate due to reasons discussed in the
previous section.

7.3.1 Objective function

The inverse problem of identification of unknown excitations is formulated
here in the form of the problem of minimization of the mean square discrep-
ancy between the measured response εM(t) and the modeled response ε(t). The
following objective function is thus minimized:

F (f0) :=
1

2

T∑
t=0

∥∥εM(t)− ε(t)
∥∥2 + 1

2
δ
∥∥Tf0

∥∥2 , (7.30)

which is similar to (2.69), but allows the response ε(t) to be nonlinearly de-
pendent on the excitation f0(t) via (7.15a). The vector f (without the time
argument t) collects together the excitation loads for all time steps and in all
potentially excited DOFs. The summation extends over all the time steps t in
the considered time interval [0, T ].

The second term in (7.30) implements the Tikhonov regularization. The reg-
ularization parameter δ ≥ 0 may be assigned a specific numerical value for
example by means of the L-curve technique [130, 135]. Notice that other tech-
niques might be also used to constrain the solution space, such as the commonly
used assumption of nonnegativity of the excitation loads, f(t) ≥ 0.

7.3.2 First order sensitivity analysis

The direct differentiation method can be used for first order sensitivity anal-
ysis of (7.30) and (7.28). Computed the gradient, the objective function can
be minimized with any general-purpose gradient-based optimization algorithm.
The derivatives of the objective function take the following form:

∂F (f0)

∂f0i (t)
=

1

2
δ
∂
∥∥Tf0

∥∥2
∂f0i (t)

−
∑
j

T∑
τ=t

(
εMj (τ)− εj(τ)

) ∂εj(τ)
∂f0i (t)

. (7.31)
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The first term in (7.31) can be computed in a straightforward way. The derivative
of the response in the second term is nonvanishing for t ≤ τ and can be then
expressed by differentiating (7.15a) as

∂εj(τ)

∂f0i (t)
= Dκf

ji (τ − t) +
τ∑

ζ=t

∑
k

Dκκ
jk (τ − ζ)

∂β0k(ζ)

∂f0i (t)
, (7.32)

which involves derivatives of the plastic distortions that can be expressed using
their increments, see (7.17),

∂β0k(τ)

∂f0i (t)
=

τ∑
ζ=t

∂∆β0k(ζ)

∂f0i (t)
. (7.33)

Derivatives of the increments can be computed (for ζ from t to τ) by solving
the differentiated (7.28):

Ej

∑
k∈Yt

(
Dκκ

jk (0)−
δjk

1− γj

)
∂∆β0k(ζ)

∂f0i (t)
= −

∂Φtr
j (ζ)

∂f0i (t)
signσtr

j (ζ), (7.34)

where the right-hand side is given by

∂Φtr
j (ζ)

∂f0i (t)
signσtr

j (ζ) =
∂σtr

j (ζ)

∂f0i (t)
− γjEj

1− γj
Iζ=t

∂Ψj(ζ −∆t)

∂f0i (t)
signσtr

j (ζ). (7.35)

To use (7.35), the derivatives of the total plastic strain and of the trial stress
are necessary. The latter are computed by (7.16) as

∂Ψj(τ −∆t)

∂f0i (t)
=

τ−∆t∑
ζ=t

∂∆β0j (ζ)

∂f0i (t)
sign∆β0j (ζ), (7.36)

while the former, by (7.19), (7.20) and (7.15b), are

∂σtr
j (τ)

∂f0i (t)
= EjD

κf
ji (τ − t) + Ej

∑
k

τ−∆t∑
ζ=t

Dκκ
jk (τ − ζ)

∂β0
k(ζ)

∂f0i (t)

+ Ej

∑
k

(
Dκκ

jk (0)− δjk
) ∂β0k(τ −∆t)

∂f0i (t)
,

(7.37)

where δjk denotes the Kronecker delta.
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7.3.3 Approximate second order sensitivity analysis

The direct differentiation method is used in the previous section to obtain
the gradient of the objective function. As a by-product, the Jacobian (7.32) of
the response is computed. Since the optimization problem is basically a least-
squares minimization problem, the Jacobian can be used for an approximate
second order sensitivity analysis in a Gauss–Newton or Levenberg–Marquardt
type optimization [137].

The second derivative of the objective function (7.30), as obtained via a
direct differentiation,

∂2F (f0)

∂f0i (t1) ∂f
0
j (t2)

=
1

2
δ

∂2
∥∥Tf0

∥∥2
∂f0i (t1) ∂f

0
j (t2)

−
∑
k

T∑
τ=

max(t1,t2)

(
εMk (τ)− εk(τ)

) ∂2εk(τ)

∂f0i (t1) ∂f
0
j (t2)

+
∑
k

T∑
τ=

max(t1,t2)

∂εk(τ)

∂f0i (t1)

∂εk(τ)

∂f0j (t2)
,

(7.38)

involves the second derivatives of the response εk(τ), which are computation-
ally costly to obtain. The crucial idea behind the Gauss–Newton optimization
algorithm relies on the observation that the second derivatives are multiplied by
response residuals and on an assumption that near the minimum the residuals
are small enough to be approximated by zero,

εMk (τ)− εk(τ) ≈ 0. (7.39)

As a result, the following approximation to the second derivative of the objective
function is obtained:

∂2F (f0)

∂f0i (t1) ∂f
0
j (t2)

≈ 1

2
δ

∂2
∥∥Tf0

∥∥2
∂f0i (t1) ∂f

0
j (t2)

+
∑
k

T∑
τ=

max(t1,t2)

∂εk(τ)

∂f0i (t1)

∂εk(τ)

∂f0j (t2)
, (7.40)

which involves only the first derivatives of the response, that is the Jacobi matrix
of the response vector.

The Gauss–Newton optimization algorithm uses (7.40) to compute an ap-
proximation to the Hessian of the objective function, while the Levenberg–
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Marquardt algorithm additionally modifies the approximated Hessian by adding
a scaled identity matrix,

∂2F (f0)

∂f0i (t1) ∂f
0
j (t2)

+ λδijδt1t2 , (7.41)

where δ·· is the Kronecker delta. In both cases, the approximated Hessian is
used with the standard Newton update rule. Thus, the scaling coefficient λ > 0
in (7.41) is in fact a weighing factor that allows a smooth transition between
the steepest descent and quasi-Newton character of the optimization steps.

7.4 Numerical example

7.4.1 The structure

The same modeled 3D truss structure is used as in Section 2.6, see Fig. 2.2.
All of the material parameters are the same; however, the bilinear isotropic hard-
ening plasticity is considered for all elements. The yield stress σ⋆ = 250 MPa,
which is typical for steel, and the hardening coefficient γ = 0.01.

As in Chapter 2, unknown excitation loads can occur only vertically in each
of the twelve upper nodes of the structure. Up to eleven strain sensors can be
placed in between these nodes for identification purposes.

7.4.2 Actual excitation and the response

The to-be-identified excitation models a constant moving load of 1000 N,
distributed in the form of two vertical loads, each of 500 N and 0.5 m apart from
each other, which move from right to left along the whole modeled structure,
see the top left plots in Figs. 7.4 and 7.5. The same load is used in Section 2.6;
however, here the structure is assumed to have elastoplastic characteristics.

As a result of the modeled excitation, the yield stress level is exceeded in
six structural elements, which are the upper horizontal elements no. 2, 3, 4,
5, 6 and 7. Their simulated exact responses are plotted in Fig. 7.2 using the
solid lines; the dashed lines mark the responses of the other five upper hori-
zontal elements that respond within the linear range. A comparison with the
corresponding responses computed in the linear case (Fig. 2.8) reveals a signifi-
cant effect of the elastoplastic material model: plastic distortions of the yielding
elements are approximately an order of magnitude larger than their linear elas-
tic strains. The effect of the bilinear material model, including properly modeled
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Figure 7.2. Simulated exact responses of the eleven strain sensors to the assumed actual
excitation. Solid lines mark the responses of the elements that exceed the plastic yield level
(elements no. 2 to 7); dashed lines mark the responses that occur within the linear range of
the instrumented elements (elements no. 1, 8, 9, 10 and 11). The plot can be compared with
the purely linear response shown in Fig. 2.8.
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Figure 7.3. The eleven upper horizontal elements are equipped with strain sensors: (left) sim-
ulated stresses (solid lines mark the responses of the elements that exceed the yield stress
level); (right) stress–strain curves. The unloading effect is clearly visible.

unloading, is also clearly visible in Fig. 7.3, which plots the stresses in the eleven
considered elements (left) as well as their stress–strain curves (right).

For identification purposes, in order to simulate the measurement error, all
the responses plotted in Fig. 7.2 are contaminated with a numerically generated
independent Gaussian noise at the same level as in Section 2.6.
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7.4.3 Sensor placement

Section 2.5 formulates three quantitative optimality criteria to assess and
compare sensor placements. However, their formulation relies on the linearity
of the identification procedure; they are not useful in the case of a structure
featuring significant elastoplastic effects, because in such a structure plastic
distortions can be significantly larger than linear elastic strains. The problem of
optimum sensor placement for the purpose of load identification seems in this
case to be open and unexplored. Here, three cases are tested:

1. First, full instrumentation is considered, that is all the eleven upper hor-
izontal elements are equipped with strain sensors, π1 := {1, 2, . . . , 11}.

2. Then, strain sensors are placed only in the elements that respond within
their linear range, π2 := {1, 8, 9, 10, 11}.

3. Finally, only plastically yielding elements are equipped with strain sen-
sors, π3 := {2, 3, 4, 5, 6, 7}.

The respective numbers of sensors (eleven, five and six) should be compared with
the total number of the unknown loads (twelve). The identification problem is
in all the cases nonunique, and the solution space is additionally constrained by
the requirement of nonnegativity of the excitation, which is implemented using
a quadratic penalty function. This is the same approach as used in the linear
case in Section 2.6.

7.4.4 Identification results

The actual excitation is depicted in top left plots in Figs. 7.4 and 7.5 in
the form of a density plot and a 3D plot respectively. The other three plots in
these figures show the results of identification with the three considered sensor
placements, π1, π2 and π3.

Similarly as in the linear case considered in Section 2.6, the qualitative fea-
tures of the actual excitation are identified properly, including its location and
characteristic movement. In quantitative terms, the magnitude is identified only
approximately, which should not be surprising, taking into account the simu-
lated measurement noise and the insufficient number of sensors for a unique
identification. The result for the placement π1 is significantly more accurate, as
compared to the other two tested placements. The obvious reason is the larger
number of sensors used in this case. Notice also that even though the place-
ment π2 uses fewer sensors than π3, it provides more accurate results, which
emphasizes the need for quantitative sensor placement criteria.
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Figure 7.4. Identification results, density plots: (top left) actual excitation; (top right) sensor
placement π1 (all the sensors 1 to 11); (bottom left) sensor placement π2 (linearly responding
elements, no. 1, 8, 9, 10, 11); (bottom right) sensor placement π3 (plastically yielding elements,
no. 2 to 7).
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Figure 7.5. Identification results, 3D plots: (top left) actual excitation; (top right) sensor
placement π1 (all the sensors 1 to 11); (bottom left) sensor placement π2 (linearly responding
elements, no. 1, 8, 9, 10, 11); (bottom right) sensor placement π3 (plastically yielding elements,
no. 2 to 7).
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Conclusions

This book is devoted to the inverse problem of identification of dynamic loads
and its applications in global structural health monitoring. Load identification
is a type II inverse problem (input identification), while most of the problems
in global SHM are either of type I (system identification) and thus intrinsically
different, or of a mixed type I+II and thus nonstandard. Besides developing new
methods for load identification itself (in Chapters 2 and 7), this book demon-
strates that, thanks to the general framework of the virtual distortion method
(Chapter 3), many of the problems in SHM can be represented in the form of
load identification problems and solved using the respective procedures (Chap-
ters 4 to 6).

Some of the developed methods are new and constitute a new contribution
to the field; Section 8.1 summarizes these that in author’s opinion are most
important. The research area is large and seems to be relatively unexplored.
There are thus many challenging problems that are still open and currently
under investigation; some of the most important or interesting are listed in
Section 8.2.

8.1 Original results

Certain results reported in this book are original and constitute a new contri-
bution to the field. The most important of them can be summarized as follows:
• Chapter 2 focuses the discussion of the inverse problem of dynamic load

identification on the practically important, but apparently neglected in
literature, case of a limited instrumentation (insufficient for a unique so-
lution). In particular, the chapter (a) introduces the notions of the recon-
structible and unreconstructible excitation spaces and (b) discusses vari-
ous techniques for augmenting the missing information (unreconstructible
space). In this context, the chapter (c) proposes three complementary
quantitative measures for assessing different sensor placements.



232 8. Conclusions

• Chapter 3 reformulates the virtual distortion method using a continuous-
time notation, which (a) emphasizes the mathematical structure of the
reanalysis problem and its nonparametric character, as well as (b) rein-
terprets it in the form of the inverse problem of load identification.

• In Chapters 4 to 6, various nonstandard SHM problems are represented
and solved in terms of a load identification problem using the unifying
continuous-time setting of the VDM formulated in Chapter 3. This in-
cludes:

– A nonparametric identification methodology proposed and experimen-
tally verified in Chapter 4. Even though it allows parametrized modi-
fications, damages or inelastic impacts to be identified, parametric nu-
merical modeling of the involved structure is avoided by using purely
experimental impulse response data.

– The substructure isolation method described in Chapter 5, which al-
lows crucial substructures to be virtually isolated from all the external
influences. As a result, any global SHM method can be directly applied
at the substructural level for the purpose of local monitoring. This is
unlike all other substructuring approaches, as they are based on simul-
taneous identification of local damages and interface forces, which is a
nonstandard problem that has to be solved using specifically tailored,
dedicated SHM methods.

– Two approaches to the problem of simultaneous identification of ex-
citation loads and structural damages developed in Chapter 6. The
considered problem is essentially an inverse problem of a mixed type
I+II that is typically solved in cumbersome two-stage alternating op-
timization procedures. The proposed approaches reduce the problem
to a pure inverse problem of either type I or type II, which allows it
to be solved using typical approaches and avoid the alternation. More-
over, reduction to type II inverse problem (load identification) allows
damages of unknown types to be identified via the recovered stress–
strain relationships, so that damage type does not need to be assumed
a priori.

• Chapter 7 develops a method for load identification in elastoplastic struc-
tures (with bilinear isotropic hardening), including a sensitivity analysis
of the response. This is one of a very few researches devoted to indirect
dynamic load identification in nonlinear structures.
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8.2 Further research

The presented research on load identification and its application in SHM has
generated a number of interesting methods and promising results. Many chal-
lenging problems and research directions seem to be still open and are currently
under investigation. In particular

• The load identification methodology presented in Chapter 2 is based on
the singular value decomposition, which is conceptually clear and appeal-
ing, but computationally a time-demanding procedure (time complexity
is larger than linear with respect to the number of time steps). More ef-
fective versions of the approach and of the proposed optimality measures
for sensor placement should be developed.

• Chapter 2 proposes three optimality measures for sensor placement with
respect to the problem of load identification. Their relation to other sen-
sor placement measures that have different aims (damage identification,
characterization of structural response, control, etc.) and that are more
widely researched in literature should be investigated.

• Resolution of nonparametric identification methods presented in Chap-
ter 4 depends on measurement error level and structural topology, which
are both reflected in the collected experimental impulse responses. De-
velopment of methods for assessing the ultimate resolution based on the
experimental data seems to be an interesting research problem. In this
context, other objective functions should be tested, especially these based
on modal characteristics such as natural frequencies, damping ratios, etc.

• The substructure isolation methodology presented in Chapter 5 should
be streamlined for applications in online isolation and local monitoring1.
Experimental verification in field tests are a natural further step towards
practical applications.

• Section 6.2 reduces the mixed-type problem of simultaneous identifica-
tion of excitations and damages to a pure type II inverse problem (load
identification), which requires a relatively large number of sensors to en-
sure a unique solution. The methodology should be further developed to
be applicable in the case of a limited instrumentation, which requires in-
vestigation and testing of various methods for augmenting the missing
information, including these discussed in Chapter 2.

1This task has been accomplished during the review process of this book, see [284].
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• The direct differentiation method of sensitivity analysis in Chapter 7 re-
quires a double loop with respect to time steps and is thus computation-
ally extensive. Faster methods should be developed that attain a linear
time complexity with respect to the number of time steps.

• The sensor placement criteria proposed in Section 2.5 rely on the linearity
of the involved structure. Quantitative criteria for sensor placement for
load identification in elastoplastic structures should be developed.
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Linear inverse problem

Most identification problems analyzed in this book are either inverse linear
problems or, thanks to the virtual distortion method, can be reduced to or
represented in the form of such problems. Therefore, this appendix reviews the
basics of the linear inverse problem with the focus on the often neglected aspects
that turn out to be important in load identification: posedness, conditioning
and regularization. No new results are introduced here. The appendix is partly
based on two insightful introductions by Hansen [110, 111] and a very elegant
functional analytic framework for linear integral equations by Kress [112, 285].
Basic notions from functional analysis are used here; for the background and
proofs, see [112] or any other textbook on functional analysis, for example the
classic texts of Rudin [286] or Kolmogorov and Fomin [287].

Load identification is originally a continuous-time problem. Hence, after a
brief discussion of the fundamental general notions of a linear operator, posed-
ness, conditioning and regularization, the appendix reviews integral linear in-
verse problems and then proceeds to their numerically treatable discretized
counterparts, which in practice arise naturally due to the discrete nature of
the measurement process. Such an outline allows also a clear exposition of the
important notions of posedness, conditioning and compactness, which become
relatively obfuscated in the process of discretization.

A.1 Linear operators

This section recalls briefly the definition of a linear operator and the few
most basic related theorems and definitions.
Definition A.1 (linear operator). An operator A : X→ Y from a linear space
X into a linear space Y is called linear if and only if

A (αx+ βy) = αAx+ βAy (A.1)

for all α, β ∈ C and all x, y ∈ X.
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A.1.1 Boundedness, continuity and compactness

One of the most important notions is the notion of a bounded operator and
of the norm of an operator:
Definition A.2 (bounded operator, norm of an operator). A linear operator
A : X → Y from a normed space X into a normed space Y is called bounded,
if and only if there exists a positive number γ such that

∥Ax∥ ≤ γ∥x∥ (A.2)

for all x ∈ X. Each such number γ is called a bound for A. The smallest bound
is called the norm of the operator A,

∥A∥ := sup
x̸=0

∥Ax∥
∥x∥

. (A.3)

In finite dimensional spaces, each linear operator is bounded and continuous.
This is not true for linear operators defined on infinite dimensional spaces: such
a linear operator can be noncontinuous and unbounded. The following theorem
states the equivalence between continuity and boundedness of a linear operator:
Theorem A.3 (Kress [112]). A linear operator is continuous if and only if it
is bounded.

A linear operator is thus either continuous and bounded, or noncontinuous
and unbounded. A typical example of a noncontinuous linear operator is the
operator of differentiation.
Example A.4 (a noncontinuous linear operator). Let A be the integration op-
erator. The inverse operator A−1 is the differentiation,

(Ax) (t) :=
t∫

0

x(τ) dτ,
(
A−1x

)
(t) =

d
dt
x(t), (A.4)

where t ∈ [0, T ]. Both operators are linear, and A is continuous and bounded.
However, the inverse A−1 is neither continuous nor bounded, as illustrated by
the following example. Let

xn(t) =
sinnt√
n
, A−1xn(t) =

√
n cosnt. (A.5)

In the maximum norm (A.9), as well as in the mean square norm (A.11), there
is ∥xn∥ → 0 and thus xn → 0. On the other hand, ∥A−1xn∥ ∼

√
n → ∞.

Consequently, A−1 is noncontinuous and unbounded in both norms.
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Of central importance in the theory of linear inverse problems, and so also
in load identification, is the notion of a compact operator. Many equivalent
definitions exist; a simple one can be stated as follows:
Definition A.5. A linear operator A : X → Y is called compact if and only
if the image (Axn) of each bounded sequence (xn) in X contains a convergent
subsequence in Y.

Compact operators are important, because many of their properties are sim-
ilar to that of finite dimensional linear operators. For example,
Theorem A.6 (Kress [112]). Compact linear operators are bounded and con-
tinuous.

It can be shown that the identity operator I : X→ X is compact if and only
if X is finite dimensional [112]. By considering the composition of a compact
operator and its inverse, A ◦ A−1 = I, the following theorem can be proved,
which justifies the classification of linear integral equations into first and second
order, see Section A.2:
Theorem A.7 (Kress [112]). A compact operator cannot have a bounded inverse
unless its range is of a finite dimension.

A.1.2 Ill-posedness, ill-conditioning and regularization

In 1902, Hadamard [288] has postulated three common sense properties that
problems in mathematical physics should possess:

1. Existence of a solution.

2. Uniqueness of the solution.

3. Continuity of the solution with respect to the input.

Problems that did not possess all three properties had initially not been consid-
ered to be physically meaningful and consequently called ill-posed or improperly
posed. Nevertheless, soon thereafter it has turned out that many important phys-
ical problems are ill-posed, such as the inverse heat transfer problem [289]. The
most insightful of Hadamard’s properties seems to be the third, which is meant
to ensure stability of the solution in case the input data to the problem contains
measurement or numerical errors. Nonexistence or nonuniqueness of solution
can be often dealt with by imposing or removing physically nonsignificant re-
strictions on the input and output spaces. However, continuity of the solution
depends also on the related norms, which are usually physically motivated and
cannot be modified.



238 A. Linear inverse problem

Ill-posedness is exemplified by the well-known Riemann–Lebesgue lemma,
which basically states that Fourier coefficients of an absolutely integrable func-
tion f tend to zero,

2π∫
0

f(t)e−int dt n→∞−−−→ 0. (A.6)

The Riemann-Lebesgue lemma implies that any integral transform of the form

(Ax) (t) :=
2π∫
0

A(t, τ)x(τ) dτ, t ∈ [0, 2π], (A.7)

where A is continuous, tends to damp high frequency components in x(t): the
higher the frequency, the more damped it is. In other words, an arbitrarily large
perturbation of x(t), if it is of frequency high enough, corresponds to an arbi-
trarily small perturbation of the transform (Ax) (t). Consequently, the problem
of finding a function given its transform (A.7) is noncontinuous and unbounded,
and thus ill-posed. In particular, if A(t, τ) := Iτ<t, here I· is the indicator func-
tion (2.64), then (A.7) corresponds to integration and the noncontinuity of the
inverse problem is demonstrated in Example A.4. Note that continuity can be
achieved by restricting the originally infinite dimensional input space to a finite
dimensional space of functions with a limited frequency range, and even then
the function can remain extremely sensitive to perturbations of its transform, if
the considered frequency range is large enough.

The above example shows that, even for well-posed problems, an additional
measure of sensitivity of the output with respect to the input data is necessary.
Such a measure is called conditioning. The condition number of a linear problem
x 7→ Ax is defined in terms of the relative sensitivity as, see (A.3),

κA := sup
x,∆x ̸=0

∥A(x+∆x)−Ax∥
∥Ax∥
∥∆x∥
∥x∥

=
supx ̸=0

∥Ax∥
∥x∥

infx ̸=0
∥Ax∥
∥x∥

=
∥A∥
∥A−1∥

. (A.8)

For nonlinear problems the condition number has to be computed locally. For a
noncontinuous (and thus ill-posed) problem, the condition number is infinite.

Significantly ill-conditioned problems are usually difficult to solve directly, as
even small measurement or numerical errors in the input data can significantly
perturb the computed output. Though, such problems can be solved approxi-
mately by employing one of the numerous regularization techniques. These tech-
niques effectively reduce the sensitivity by using additional information about
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the expected output, such as smoothness, nonnegativity, etc. Regularization
techniques for finite-dimensional linear systems are briefly reviewed in Subsec-
tion A.3.2.

A.2 Infinite dimensional integral problems

All the functions considered in this book are implicitly assumed to belong
to one of the two following typical function spaces:

1. The Banach space C[a, b] of continuous real-valued functions x defined
on the interval [a, b] and furnished with the maximum norm

∥x∥∞ := max
t∈[a,b]

|x(t)|. (A.9)

2. The Hilbert space L2[a, b] (of the equivalence classes) of measurable and
Lebesgue square-integrable real-valued functions x defined on the interval
[a, b] and furnished with the scalar product

⟨x, y⟩ :=
b∫

a

x(t)y(t) dt (A.10)

and the related mean square norm

∥x∥2 :=
√
⟨x, x⟩ =

 b∫
a

x2(t) dt

1/2

. (A.11)

Note that the space L2[a, b] is the complement of the space C[a, b] with respect
to the mean square norm.

These functional spaces, when required for load identification with more
than just a single sensor or actuator, can be straightforwardly extended to the
corresponding spaces of finite dimensional vectors of functions, (C[a, b])n or(
L2[a, b]

)n, n ∈ N. For example, the scalar product and the norm are defined in
the latter space as

⟨x,y⟩ :=
n∑

i=1

⟨xi, yi⟩, ∥x∥2 :=
√
⟨x,x⟩. (A.12)
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A.2.1 Linear integral operator

Linear integral operator is a special case of linear operator.
Definition A.8 (linear integral operator). An operator A : X → Y from a
normed function space X into a normed function space Y, defined as

(Ax) (t) :=
b∫

a

A(t, τ)x(τ) dτ, (A.13)

where A : R×R→ R, is called a linear integral operator with the kernel A(t, τ).
Definition A.9 (Volterra operator). A linear integral operator A with a variable
upper limit of integration,

(Ax) (t) :=
t∫

a

A(t, τ)x(τ) dτ, (A.14)

is called a Volterra integral operator.
Properties of an integral operator depend on its kernel. In load identification,

the impulse response functions are either continuous or have a single disconti-
nuity at time t = 0. If the system is time-invariant1, the related kernels usually
depend on the difference of the arguments, A(t, τ) = A(t − τ), and are called
difference kernels. According to the following definition, they can be classified
as weakly singular:
Definition A.10 (weakly singular kernel, Kress [112]). A kernel A, which for
all t, τ ∈ [a, b], t ̸= τ , is continuous and, for certain positive constants M and
α ∈ (−1, 0], satisfies

|A(t, τ)| ≤M |t− τ |α, (A.15)

is called a weakly singular kernel.
Linear integral operators with continuous or weakly singular kernels are often

called smoothing operators, as they tend to damp higher frequency components
of their arguments. This is exemplified by the Riemann–Lebesgue lemma, see
the example in Subsection A.1.2. Due to the following result, it is also in perfect
agreement with Theorem A.7:
Theorem A.11 (Kress [112]). An integral operator (A.13) with a continuous
or weakly singular kernel is compact.

1A linear system is time-invariant, if actuators and sensors do not move.
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An m×n matrix of integral operators Aij : X→ Y is called a matrix integral
operator A : Xn → Ym. It is used to deal with the spaces of vectors of functions,
like (C[a, b])n or

(
L2[a, b]

)n, and systems of linear integral equations. A matrix
operator is obviously compact if and only if its component operators are all
compact.

A.2.2 Linear integral equations

Linear operator equations of the following forms:

y = Ax, y = (I − A)x, (A.16)

where I is the identity operator, are called to be respectively of the first and
second kind. If A is an integral operator, the equations, depending on the form
of the integration limits, are called Fredholm or Volterra integral equations.
Definition A.12 (Fredholm integral equations). Integral equations of the form

y(t) =

b∫
a

A(t, τ)x(τ) dτ, (A.17a)

y(t) = x(t)−
b∫

a

A(t, τ)x(τ) dτ, (A.17b)

and called Fredholm integral equations of the first and second kind, respectively.
Fredholm equations in which A(t, τ) = 0 for t > τ are called Volterra equa-

tions and expressed using variable upper integration limits. Such equations have
special properties, see, e.g., Theorem A.16, and are thus usually treated sepa-
rately from Fredholm equations.
Definition A.13 (Volterra integral equations). Integral equations of the form

y(t) =

t∫
a

A(t, τ)x(τ) dτ, (A.18a)

y(t) = x(t)−
t∫

a

A(t, τ)x(τ) dτ, (A.18b)

are called Volterra integral equations of the first and second kind, respectively.
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The most common problem in load identification is the deconvolution prob-
lem of the structural response with respect to the impulse response function. In
case of a displacement or velocity response, it is formulated in the form of the
following integral equation:

y(t) =

t∫
a

A(t− τ)x(τ) dτ, (A.19)

which is a special case of Volterra integral equation of the first kind with a
difference kernel. In view of Theorems A.7 and A.11, such a problem is ill-posed.

Note that systems of linear integral equations of the first and second kind
can be conveniently stated using matrix integral operators as

y = Ax, y = (I −A)x. (A.20)

A.2.2.1 Equations of the first kind

Due to Theorems A.7 and A.11, the inverse of an integral operator with
a continuous or weakly singular kernel cannot be bounded and, due to Theo-
rem A.3, continuous. Therefore, the problem of solving a linear integral equation
of the first kind does not have the third property postulated by Hadamard and
is thus ill-posed, see the example in Subsection A.1.2. This can be illustrated
using the singular value expansion of the related operator. A general formula-
tion for a compact operator in a normed space can be found in [112]. Here, the
expansion is defined in terms of the kernel of an integral operator.
Definition A.14 (singular value expansion [111, 112, 285]). For any weakly
singular kernel A(t, τ) defined on [a, b]2, its singular value expansion (SVE) is
defined in terms of the singular values µi and the corresponding left and right
singular functions ui(t) and vi(τ) as follows:

A(t, τ) =
∞∑
i=1

µiui(t)vi(τ), (A.21)

where the singular values are positive and ordered nonincreasing, µ1 ≥ µ2 ≥
. . . > 0, with no point of accumulation except possibly 0, and the singular func-
tions form two orthonormal sequences (ui) and (vi), that is

⟨ui, uj⟩ = ⟨vi, vj⟩ = δij , (A.22)

where δij denotes the Kronecker delta.
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Since the left and right singular vectors are respectively orthonormal, the
following relation holds:

(Avi) (t) = µiui(t), (A.23)

where the integral operator A is defined as in (A.13).
It is possible that there are only finitely many singular values. The series in

(A.21) degenerates then into a finite sum and A(t, τ) is called a degenerate ker-
nel. A nondegenerate weakly singular kernel has infinitely many singular values,
which decay to zero. It can be proved that the more smooth is the kernel, the
quicker the decay rate [111, 112]: if the kernel is n times continuously differen-
tiable, then µi = O(i−n−1/2), and if it is infinitely many times differentiable, the
decay rate is even exponential, µi = O(r−i) for a certain constant r > 1.

The right singular functions vi(t) form an orthonormal basis of the orthog-
onal complement of the null space of A in the space L2[a, b], while ui(t) form
an orthonormal basis of the range of A. These bases resemble spectral bases,
because the smaller the singular value, the more high-frequency components (os-
cillations or zero-crossings) have the corresponding singular functions [111, 126].
As a result, Equation (A.25) can be interpreted to be a generalization of the
Riemann–Lebesgue lemma (A.6): the larger i, the more oscillatory vi(t) and the
smaller its image µiui(t).

Consider an integral equation of the first kind (A.17a). A substitution of the
SVE (A.21) yields

y(t) =

∞∑
i=1

µi⟨x, vi⟩ui(t) (A.24)

with the scalar product defined as in (A.10). From (A.24) it can be deduced
that the equation of the first kind (A.17a) has a particular solution

x(t) =
∞∑
i=1

⟨y, ui⟩
µi

vi(t) (A.25)

if and only if y(t) belongs to the range of A, which is spanned by the left singular
functions ui(t), and

∥x∥2 =
∞∑
i=1

|⟨y, ui⟩|2

µ2i
<∞, (A.26)

which is called the Picard condition and means that |⟨y, ui⟩| must decay to zero
faster than the singular values µi.
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The ill-posed nature of (A.17a) is clearly demonstrated in (A.25). If the input
data (function y(t)) is perturbed within the range of A to become

yϵ,i(t) := y(t) + ϵui(t), (A.27)

then the perturbation propagates to the solution, which is then given by

xϵ,i(t) = x(t) +
ϵ

µi
vi(t). (A.28)

Consequently, even for an arbitrarily small perturbation factor ϵ, the amplifica-
tion ratio of the perturbation,

∥x− xϵ,i∥
∥y − yϵ,i∥

=
1

µi
, (A.29)

can be made arbitrarily large, because the singular values tend to zero. The
successive singular functions are increasingly more oscillatory [111, 126] and
thus the higher is the frequency of the perturbation, the larger its amplification
ratio. As a result, low-frequency components of the solution x(t) are usually
relatively easy to compute, while high-frequency components are more likely to
be masked by measurement or numerical errors in the input data y and harder
to extract.

A.2.2.2 Equations of the second kind

A systematic approach to integral equations of the second kind is offered
by the Riesz [290] and Fredholm theories [291]. Originally, they have been for-
mulated for integral equations in the space C[a, b], but generalizations to other
linear spaces and general operator equations are straightforward. This subsec-
tion, based on Kress [112, 285], reviews only the most important result of the
Riesz theory. It emphasizes the main difference between Fredholm integral equa-
tions of the second and of the first kinds: if a solution x(t) to (A.17b) exists, then
it depends continuously on the input y(t). Thus, if the first two of Hadamard’s
properties are satisfied for such an equation, then also the third property is
satisfied.

The Riesz theory yields the following result:
Theorem A.15 (Kress [112]). Let X be a normed space and A : X→ X a com-
pact linear operator. Consider the homogenous equation

0 = x−Ax (A.30a)
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and the inhomogeneous equation

y = x−Ax, (A.30b)

where y ∈ X. Then either2

The homogeneous equation (A.30a) has only the trivial solution x = 0,
and the inhomogeneous (A.30b) has a unique solution x ∈ X that depends
continuously on y.

or
The homogeneous (A.30a) has a finite number m of linearly independent
solutions x1, . . . , xm, and the inhomogeneous (A.30b) is either unsolvable
or its general solution is a sum of a particular solution x̃ and an arbitrary
linear combination of x1, . . . , xm.

Thanks to the Riesz theory, the existence and uniqueness of the solution
to an inhomogeneous equation of the second kind, (A.30b), can be verified via
an examination of the stationary points of the related compact operator or, in
other words, the Riesz theory states the equivalence between the surjectivity
and injectivity of the related operator I − A.

Theorem A.15 is used in [112] to prove the fact that each Volterra integral
equation of the second kind with a continuous kernel has a unique solution in
C[a, b]. By using a compact matrix integral operator in place of A, the same
result can be applied to systems of integral equations and to prove the following
theorem, which is formulated in terms of systems of Volterra integral equations:
Theorem A.16. The system of Volterra integral equations of the second kind

y = x−Ax, (A.31)

where A is an n×n matrix integral operator whose all component operators Aij

are continuous, has for each y ∈ (C[a, b])n a unique solution x ∈ (C[a, b])n.
Theorem A.16 ascertains the existence and uniqueness of the solution to

several load identification problems analyzed throughout this book.
If the homogeneous equation (A.30a) has nontrivial solutions, Theorem A.15

offers no clues as to whether the inhomogeneous equation (A.30b) for a given
inhomogeneity y(t) is solvable or not. The answer is provided by the Fredholm
theory, whose main result (the Fredholm alternative) basically states that in

2In functional analytic terms: the operator I −A either is injective and surjective and has
a bounded and thus continuous inverse or its null space has nonzero finite dimension and its
range is a proper subspace of X.
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such a case the inhomogeneous equation is solvable if and only if the inhomo-
geneity is orthogonal to all solutions of the adjoint homogeneous equation [112].

The Fredholm alternative uses the notion of an adjoint operator. In case of
an integral operator A with a continuous or weakly singular kernel or a matrix
integral operator composed of such operators, the adjoint operator is denoted
by A⋆ and it is also a (matrix) integral operator that is defined as

(Ax) (t) =
b∫

a

A(t, τ)x(τ) dτ, (A⋆x) (t) =

b∫
a

A(τ, t)x(τ) dτ, (A.32)

for an integral operator A or

(Ax) (t) =

b∫
a

A(t, τ)x(τ) dτ, (A⋆x) (t) =

b∫
a

AT(τ, t)x(τ) dτ. (A.33)

for a matrix integral operator A.

A.2.3 Discretization

In practice, it rarely happens that an analytical solution to an integral equa-
tion can be found. The reason is twofold: first, unless the equation is extremely
simplistic, an analytical solution rarely exists at all, and second, in applications
the data is often given in an already discretized numerical form (sequences of
measured or simulated values), which enforces discretization of the solution.

A properly discretized version of an integral equation can be expected to in-
herit some of the conditioning and posedness properties of the original problem.
Equations of the first kind are ill-posed, and physical problems expressed in the
form of such equations have thus a seemingly contradictory property: the finer
the discretization, the worse is the conditioning of the resulting finite dimen-
sional problem and so the less accurate is the computed solution. As a result,
numerical regularization is a must. In load identification problems, regulariza-
tion usually has to be also applied to the discretized versions of equations of the
second kind: even if well-posed, they are often significantly ill-conditioned and
hence a subject to a similar numerical treatment as the ill-posed equations of
the first kind.

A comprehensive discussion of the numerical methods for discretization and
numerical solution of linear integral equations can be found in Delves and Mo-
hamed [292]. Kress [112, Chapters 11–14, 17] offers a more theoretical treatment,
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while Hansen [111, Chapter 3] provides a short practical overview. These ref-
erences discuss a great variety of approaches, which however come usually in
two general flavors: quadrature (or Nyström) methods and projection methods.
Formulas based on kernel expansions, such as (A.25), are appealing and theo-
retically important, but usually impractical, because the SVE is rarely known
in advance and it is rather the finite dimensional version of the equation that is
used to approximate the SVE than the opposite [293].

A.2.3.1 Quadrature/Nyström methods

These methods are based on the following standard formula for numerical
integration:

b∫
a

h(t) dt ≈
N∑
j=1

αjh(tj), (A.34)

where tj ∈ [a, b] are the quadrature points and αj are the quadrature weights.
Different quadrature rules give rise to different versions of the method. If applied
to the integrations in (A.17), it yields

y(t) =

N∑
j=1

αjA(t, tj)x̃(tj), (A.35a)

y(t) = x̃(t)−
N∑
j=1

αjA(t, tj)x̃(tj), (A.35b)

where the tilde is used to mark explicitly the fact that the computed solution
x̃(t) is only an approximation to the exact solution x(t). Now, the collocation
requirement is enforced and (A.35) are required to be exactly satisfied at the
collocation points. If the same quadrature points are used for this purpose, the
following equations are obtained:

y(ti) ≈
N∑
j=1

αjA(ti, tj)x̃(tj), (A.36a)

y(ti) ≈
N∑
j=1

(δij − αjA(ti, tj)) x̃(tj), (A.36b)

which can be collected for all i = 1, 2, . . . , N to form the respective finite dimen-
sional linear systems with the unknowns x̃(ti). The equation of the first kind
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can be collocated at points different from the quadrature points, provided they
are not fewer in number.

Notice that the quadrature method is very natural in case the kernel A(t, τ)
and the response y(t) are provided right from the beginning in the discretized
form of a sequence of measured or simulated values sampled at points ti. The
approximate solution is given then in exactly the same discrete form, and a
continuous version can be obtained by interpolation. Otherwise, if the kernel and
the response are continuous and an equation of the second kind is considered,
the continuous version can be computed by a rearranged (A.35b):

x̃(t) = y(t) +
N∑
j=1

αjA(t, tj)x̃(tj). (A.37)

A.2.3.2 Projection methods

The result of a quadrature method is an approximation of the exact solution
sampled at the quadrature points, which has been computed by collocating
the equation at the collocation points. In projection methods, the approximate
solution is sought in a certain finite dimensional space,

x(t) ≈ x̃(t) :=
N∑
j=1

αjxj(t), (A.38)

where xj(t) are its basis functions. The combination coefficients αj are computed
by projecting (A.17) onto another finite dimensional space spanned by the basis
functions yi(t), i = 1, 2, . . . , N ,

⟨yi, y⟩ = ⟨yi,
b∫

a

A(·, τ)x(τ) dτ⟩, (A.39a)

⟨yi, y⟩ = ⟨yi, x−
b∫

a

A(·, τ)x(τ) dτ⟩, (A.39b)

and substituting (A.38). It yields



A.3 Finite dimensional discretized problems 249

b∫
a

yi(t)y(t) dt =
N∑
j=1

αj

b∫
a

b∫
a

yi(t)A(t, τ)xj(τ) dτ dt, (A.40a)

b∫
a

yi(t)y(t) dt =
N∑
j=1

αj

b∫
a

yi(t)

xj(t)− b∫
a

yi(t)A(t, τ)xj(τ) dτ

 dt, (A.40b)

which for both kinds of equations is a linear finite dimensional system of N
equations and N unknowns αj . As in the case of quadrature methods, a larger
number of basis functions yi(t) can be used, which will provide an overdeter-
mined finite dimensional system.

Notice that there is an essential difference between the projection approach
and the quadrature approach, unless the Dirac delta functions are used at the
quadrature points in the role of the basis functions xj(t) and yi(t).

A.3 Finite dimensional discretized problems

Whatever discretization method is used, its ultimate result is always equiv-
alent to a finite dimensional system of linear equations

Ax = y, (A.41)

where x ∈ RN2 and y ∈ RN1 are the vectors of coefficients that define the
approximations to the exact solution x(t) and the exact response y(t), and
A ∈ RN1×N2 is the respective finite dimensional counterpart of the operator A
in the original integral equation. Notice that the explicit notational distinction
between the equations of the first and the second kind is lost in the discretiza-
tion process, even if certain characteristic features of the original equation are
reflected in (A.41).

A.3.1 Solvability and conditioning

If the linear system (A.41) is not significantly ill-conditioned, existence and
uniqueness of its solution can be discussed in the terms of its dimensions and
rank or, in other words, in the terms of surjectivity and injectivity of the linear
operator corresponding to the matrix A. In general, four cases are possible:

1. Bijection (N1 = N2 = rankA, that is full-rank square A). The equation
has a unique solution.

2. Surjection, but not injection (N1 = rankA < N2). For each y there exist
infinitely many solutions, which can be expressed in the form of a sum of
a particular solution and the null space of A.
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3. Injection, but not surjection (N2 = rankA < N1). Depending on y, there
is either a unique solution (if y is in the range of A) or no solution at all.

4. Neither injection, nor surjection (rankA < min(N1, N2)). Depending
on y, there are either infinitely many solutions (if y is in the range of A)
or no solutions at all.

In problems of load identification, the equation is almost always extremely
ill-conditioned. As a result, the null space of A can be understood as becoming
fuzzy: there exist subspaces of RN2 , which belong to the null space effectively,
even if not formally. Effective membership of the null space is thus gradual and
depends on the decay rate of the singular values and on the assumed accuracy
level of y, which is limited by the floating point arithmetic used in computations
and often also by the measurement noise3. It can be explained in terms of the
singular value decomposition, which is the discrete counterpart of the singular
value expansion used in Subsection A.2.2.1:
Definition A.17 (singular value decomposition [111, 128]). Each matrix A ∈
RN1×N2 can be essentially uniquely4 represented in the form of the following
product:

A = UΣVT, (A.42)

where U and V are square unitary matrices of appropriate dimensions, UTU =
IN1 and VTV = IN2 , and Σ is a diagonal matrix with nonnegative elements on
the diagonal. Columns of U and V are called the left and right singular vectors.
The positive diagonal elements σi of Σ are called the singular values of A and
are ordered nonincreasingly, σ1 ≥ σ2 ≥ . . .

Equation (A.42) can be expanded in terms of its singular values as

A =

N∑
i=1

σiuiv
T
i , (A.43)

where N ≤ min(N1, N2) is the total number of the singular values and ui

and vi denote the ith left and right singular vector of A. Notice the direct
correspondence between (A.43) and (A.21); the only important difference is
that the singular values σi are always finite in number, while µi can form an
infinite sequence that decays to zero. The relation between the SVE and the
SVD of the discretized problem is discussed in [293].

3This concept is used in Chapter 2 to introduce the notion of the space of loads that are
unreconstructible under given noise level.

4That is uniquely up to factors ±1 and permutation of the singular vectors.
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The decay rate of the singular values conveys full information about condi-
tioning of the equation. A substitution of (A.43) into (A.41) yields the following
expansion of Ax in terms of the left singular vectors ui,

N∑
i=1

σi
(
vT
i x
)
ui = y. (A.44)

If the actual vector y belongs to the range of A, which is spanned by all the ui’s,
then (A.41) has the following particular solution:

x =

N∑
i=1

uT
i y

σi
vi. (A.45)

Equation (A.45) clearly demonstrates that conditioning of (A.41) depends on the
decay rate of the singular values σi. A similar analysis as in Subsection A.2.2.1
yields the perturbed solution

xϵ,i = x+
ϵ

σi
vi (A.46)

to the equation, in which the vector y is perturbed within the range of A,

yϵ,i := y + ϵui. (A.47)

The perturbation propagates thus with the amplification factor of σ−1
i . Conse-

quently, the condition number defined in (A.8) equals the ratio of the maximum
to the minimum singular value,

κA =
σ1
σN

, (A.48)

and in general, conditioning of the subspace spanned by the ith singular vector
equals σ1/σi. As a result, if the SVD of a highly ill-conditioned problem is com-
puted using floating point arithmetic, small singular values tend to level off due
to the finite machine precision. The subspaces spanned by the corresponding
singular vectors belong effectively to the null space of A (its “numerical null
space”) and should be disregarded in the solution process, as they do not con-
vey any meaningful information. This observation yields the following discrete
version of the Picard condition (A.26), which is cited here from [111, 294]: Let κ
denote the level at which the computed singular values σi level off due to round-
ing errors. The discrete Picard condition is satisfied if, for all singular values
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larger than κ, the corresponding coefficients |uT
i y| decay on average faster than

the σi. Notice that the discrete Picard condition is not meant to guarantee the
finiteness of the norm of the solution, but rather to verify if the original Picard
condition (A.26) seems to be satisfied for the continuous problem that has given
rise to (A.41).

A.3.2 Numerical regularization

Load identification problems are typically expressed in the form of Volterra
integral equations, and as such, they are significantly ill-conditioned unless the
considered setup is extremely simplistic. Thus, even if the response vector y
used for identification of the load vector x contains no measurement noise, the
presence of rounding errors in the floating point arithmetic can destroy the
accuracy of a naively computed result. To be meaningful, the solution has to be
numerically regularized using a proper value of the regularization parameter.

A.3.2.1 Regularization methods

If (A.41) is significantly ill-conditioned, any solution computed in a naive
way using standard solution techniques would be dominated by numerical noise
and useless. Ill-conditioning of the problem must be then taken into account
in the solution process, and this is done by a numerical regularization of the
solution.

In general terms, regularization can be understood as a process of discarding
or attenuating these components of the solution x that are too strongly affected
by the errors present in y. In the terms of the SVD-based solution (A.45),
regularization is equivalent to using a filtering function ψ(σ),

x =

N∑
i=1

ψ(σi)
uT
i y

σi
vi, (A.49)

in order to attenuate the components of the sum that correspond to small sin-
gular values and are prone to errors due to excessive amplification by the unat-
tenuated factor σ−1

i .
A comprehensive overview of regularization methods for Toeplitz matrices

that are discretized versions of integral convolution operators can be found in
Hansen [109], see also [110, 111].

Direct regularization. The direct regularization methods are analogous to
the standard direct solution methods in that they compute the regularized so-
lution at once, in a noniterative way. The two most popular methods of direct
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regularization are the truncated singular value decomposition and the Tikhonov
regularization.

The TSVD is sometimes called also the spectral cutoff method, because it
simply neglects all the components of the full SVD-based solution that corre-
spond to the singular values below certain cutoff level α, that is

ψTSVD(σ) =

{
1 if σ ≥ α,
0 otherwise.

(A.50)

Computation of the TSVD-regularized solution requires the SVD of the matrix
A to be already computed. This is a numerically costly operation, but needs to
be performed only once: given the SVD, (A.49) can be computed at a low cost
for different vectors y.

The Tikhonov regularization method originates from the work of Tikhonov
on ill-posed integral problems, see [130]. In terms of (A.49), it is defined by the
following filtering function:

ψTikhonov(σ) =
σ2

σ2 + α2
, (A.51)

where α is the regularization parameter. In comparison to the TSVD, (A.51)
results in a smooth transition between undamped and damped components of
the solution. A direct application of the formula requires performing the SVD;
however, it might be shown that the solution regularized using (A.51) can be
also found by minimization of the following objective function:

F (x) := ∥y −Ax∥2 + α2∥x∥2, (A.52a)

which is a weighted sum of the residual of the underlying problem (A.41) and
the regularization term. Usually, the following more general form is used:

F (x) := ∥y −Ax∥2 + α2∥Tx∥2, (A.52b)

where the matrix T expresses the desired regularity conditions. Besides the
identity matrix, often the matrices of the first or second differences are used or
their weighted sums. The solution satisfies the regularized counterpart of the
normal equation, (

ATA+ α2TTT
)
x = ATy, (A.53)

which corresponds to the least-squares problem of minimizing the residuum to
the augmented system [

A
αT

]
x =

[
y
0

]
. (A.54)
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Iterative regularization. Formulation of the Tikhonov regularization in the
form of a minimization problem of the objective function (A.52b) suggests an
iterative approach to regularization, in which the regularized solution is retrieved
step by step, in a series of computationally inexpensive iterations. Minimization
of the quadratic objective function (A.52b) can be performed in such a way, but
it has a disadvantage that if the regularization parameter α is changed, the full
optimization process needs to be repeated from the beginning.

The conjugate gradient least squares [111, 128] method is probably the most
commonly used iterative regularization scheme. In general, the CGLS is the
conjugate gradient algorithm applied to solve the normal equation

ATAx = ATy. (A.55)

The CGLS is based on the conjugate gradient iterations, hence it is quickly
convergent and instead of a factorization of the matrix A, it requires only two
black-box procedures that compute matrix–vector products Ax and ATx. It
might be shown that in each successive iteration the method recovers compo-
nents of the solution that are related with increasingly smaller singular values.
The number of iterations plays thus the role of the regularization parameter,
which is a very useful property: to obtain a less regularized solution, it is enough
just to perform a few more inexpensive iteration steps. In terms of the filter-
ing function, the transition between undamped and damped components is not
abrupt (as in the TSVD) but rather gradual, see [109, 110],

ψCGLS(σ) ≈

{
1 for large singular values,
O(σ2) for small singular values.

(A.56)

In the transition range ψCGLS can slightly exceed one.

A.3.2.2 Regularization parameter

In all regularization methods, the amount of regularization is governed by
the regularization parameter α (cutoff level of singular values in the TSVD,
Tikhonov weighing parameter, number of CGLS iterations, etc.). Proper choice
of this parameter is crucial, so that the computed solution is neither underreg-
ularized not overregularized. A large number of different methods can be used
to select the parameter; two comprehensive reviews with numerical tests can be
found in [131, 132], see also [111, Chapter 5].

The most popular method is probably the L-curve approach, see, e.g., [135].
It is a log-log scale plot of the norm of the regularization term ∥Tx∥ vs. the



A.3 Finite dimensional discretized problems 255

norm of the residuum ∥y−Ax∥ parametrized by the regularization parameter α,
see an example in Fig. 6.4 (left). The L-curve has usually an L-shaped form and
consists of two branches: the horizontal branch that corresponds to overregular-
ized solutions (small regularization term, increasingly larger residuum) and the
vertical branch that corresponds to underregularized solutions (small residuum,
increasingly larger regularization term). The optimum value of the regulariza-
tion parameter is assumed to correspond to the corner of the curve. Notice that
this criterion requires the solution to be computed several times for a range
of regularization parameters. This can be time-consuming, if direct regulariza-
tion methods are used, but straightforward with most of the iterative methods
including the CGLS, as each its iteration is computationally inexpensive and
retrieves an increasingly less regularized solution.
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