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Chapter 1

Introduction

Until early nineties of the 20th century, computational engineering problems
were commonly understood as tasks in which input parameters (like geometry,
material and sizing properties, initial state variables, etc.) were defined and as-
signed certain numerical values, while the response — space-time distributions
of state variables and various functionals thereof — were sought for as solutions
of certain initial-boundary value problems in their either analytical forms or
space-time discretized at various levels. Highly advanced methods were (and
continue to be) developed in which the wide use of computers has turned out
to be indispensable for any sophisticated assessment of realistic structural be-
haviour. Particular difficulties have been encountered and gradually overcome in
the case of problems with complex geometries, non-classical (unilateral) bound-
ary conditions and complicated, strongly nonlinear and path-dependent material
behaviour.

Among many methodologies of approximate solution of nonlinear problems
of mechanics, the finite element method (FEM) is widely recognized as most ef-
fective and universal tool. Its success has been proved in industrial practice —
it seems hardly imaginable now that design process of any structure would not
include extensive numerical simulations of its mechanical behaviour performed
with the use of a nonlinear finite element code. Fundamentals and application
power of the method, developed since early seventies, have been presented in
a number of monographs and textbooks, like e.g. |8, 25, 46, 49, 61, 94, 105, 141],
as well as in manuals to specific commercial implementations, e.g. [1]. It is
stressed that abilities of the methodology include both statical and dynamical
analysis, various types of geometric and material nonlinearities, complex bound-
ary condition types, solid—fluid mechanical interactions, as well as couplings with
electrical, thermal and magnetic phenomena.

Plastic phenomena occurring in many structural and geotechnical materials
have always belonged to most challenging tasks in computational engineering.
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Strongly nonlinear, path- and frequently also rate- and temperature-dependent
character of plastic deformation combined with geometric nonlinearities and
discontinuous changes in material behaviour at limit points between elastic and
inelastic régimes require advanced mathematical models and appropriate com-
putational solution algorithms. Starting from works of Tresca [123], Huber [47|
and von Mises [86] who had laid fundamentals for modern theory of plastic-
ity, large progress has been made in both understanding the micromechanical
nature of plastic flow and in its mathematical modelling in the macro scale.
Formulation of mathematical theory of slip-induced plasticity in metal crys-
tals |5, 43, 45| was accompanied by development of models including large
deformations [75, 76, 93|, anisotropy [42, 50, 89|, porosity and void nucle-
ation [24, 34, 126], nonlinear hardening and cyclic effects [19, 26, 79], and
viscoplastic phenomena |2, 39, 102, 103, 127|. For granular materials (rocks,
soils) and metallic foams, where plasticity is mainly friction-induced, a variety
of non-associated and associated flow models were developed [16, 28, 30, 109].
The citations above refer to only milestone publications and are by no means in-
tended to be exhaustive — extensive reviews of constitutive models of plasticity
can be found e.g. in monographs [44, 57, 81, 139|.

Elasto-plastic and elasto-viscoplastic constitutive relations are flow equations
and are thus formulated in terms of rates of state variables. In numerical ap-
plications they require appropriate integration in time. The standard approach
employs the ‘elastic predictor—plastic corrector’ scheme, in which trial elastic
finite increment of stress is, whenever violating the yield condition, corrected by
a plastic counterpart determined from approximate time integration of the flow
equation. Such return-mapping algorithms were first proposed in the form of
radial return schemes for cylindrical flow surfaces in the space of principal stress
components (e.g. Huber-Mises yield condition), cf. [131], and [74] (account for
strain hardening). Return mapping strategies for more general plasticity mod-
els were developed in e.g. [53, 116] (plane stress state), [110, 112, 114] (general
smooth and non-smooth yield surfaces), [87, 104| (for yield surfaces with cor-
ners), [14, 15| (for the Cam-clay plasticity model), [103, 130] (for viscoplastic
models), and [52] (for granular materials). A critical issue regarding efficiency
of iterative solution schemes in such algorithms is determination of the consis-
tent tangent stiffness operator [111, 115, 116]. This frequently appears to be
a complex task, e.g., in a number of large-deformation formulations, evaluation
of such an operator requires unique differentiation of tensor spectral decompo-
sition routines, including cases of multiple eigenvalues. The monograph [113]
contains an exhaustive review of return-mapping algorithms and discussion of
related computational issues, including consistent differentiation.
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In some practical steady plastic flow applications (forging, extrusion), the
constitutive relations do not need to be time-integrated — instead, they are
spatially discretized in the rate form and only state variable rates are of inter-
est as the analysis response, cf. [140| for fundamentals and [117| for practical
applications of the ‘flow approach’ in computational plasticity.

In the recent two decades, we have been witnessing emergence of a very fruit-
ful branch in computational mechanics — the parameter sensitivity analysis
(SA). Mathematical fundamentals of the method were presented in numerous ar-
ticles and books; let us only mention here milestone monographs [22, 32, 37, 41,
65] and collections [66, 108]. The aim of SA is to find the relationship between
parameters defining the system at hand and the system response. The main
interest of the analyst is here not just to quantify the response for a given set
of input parameters, but also to evaluate influence of possible variations of the
parameters on the corresponding change in the response. In practice this means
determination of response gradients with respect to the system parameters, al-
though higher order derivatives may also be a subject of interest [27, 38, 40],
e.g. in the critical state analysis [90, 91].

Depending on the nature of input parameters and their variations considered
in the sensitivity analysis, we may distinguish between different types of SA
in mechanical problems. Probably the most frequently encountered one in the
literature is the design sensitivity analysis (DSA) in which the system input
parameters are understood as the design parameters, i.e. the quantities whose
particular numerical values as well as their changes depend on arbitrary decisions
of the designer. Another branch of SA is the imperfection sensitivity analysis
(ISA) in which variations of the system input parameters are independent of
the designer’s will and have usually random character. Mathematical essence
in both cases is the same — the sensitivity analysis consists in determination of
first- or higher-order gradients of response functionals with respect to a certain
set of input scalar quantities. Thus, the names are frequently exchanged and
the term ‘design variation’ happens to be used to describe imperfection, while
‘design parameters’ may as well denote e.g. probability distribution parameters
(means, standard deviations, etc.) of random input quantities. In this thesis,
‘design parameters’ will be referred to as scalar input parameters of any type
defining the system under consideration. Consequently, the term DSA will be
considered equivalent to SA in general.

The area of applications of sensitivity analysis is wide and still increasing.
Computational power of contemporary computer hardware and maturity of
mathematical formulations allow to obtain response sensitivity information for
large-scale nonlinear mechanical problems as numerically cheap add-on to the
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primary analysis results. It is thus widely believed that any robust computer
simulation of a mechanical system will be considered incomplete as long as it
is not complemented with studies on response sensitivity with respect to input
parameter variations. Natural areas of applications for DSA are the parametric
‘what-if* studies at the stage of structural design, and the gradient-based de-
sign optimization in which the ‘best’ set of design parameter values is sought
for according to certain optimality criteria [37]. System identification problems
in which the unknown values of design parameters are to be found, given the
response values, are another area of applications of DSA, conceptually very sim-
ilar to the design optimization. ISA may again find its applications in system
identification, but it can also be employed in error analysis, reliability-based
optimization, as well as in stochastic analysis of the system response.

This study is devoted to methods of sensitivity analysis in computational
problems of elasto-plasticity. Evaluation of sensitivity gradients for solutions
embedding a so wide spectrum of nonlinear phenomena is a tempting challenge
for researchers and, on the other hand, it responds to increasing needs of indus-
try, where elasto-plastic behaviour of materials often plays the crucial role from
the point of view of the safety, economy and ergonomy of the final product.
Main attention is focused on the analytical methods of sensitivity, i.e. on de-
termination of analytical response gradients with respect to design parameters
(contrary to their approximate determination with finite-difference formulae at
small design perturbations).

Publications on sensitivity analysis in these classes of problems had been
appearing from late 80’s. DSA for elasto-plasticity described with the indepen-
dent deformation theory was discussed in [9, 10]. For path-dependent problems,
which include most of the elasto-plastic constitutive theories, Ryu et al. [107|
were the first to point out the most important consequence of path-dependence
for sensitivity analysis — that sensitivity gradients are path-dependent, too, i.e.
at each time instant they depend on the response itself as well as on its sensi-
tivity at previous time instants. Computational aspects of DSA for small-strain
elasto-plasticity were then discussed in [13, 73, 77, 85, 92, 95, 106, 128, 132, 135]
(rate-independent models), and in |17, 35, 62-65, 67, 129] (rate-dependent mod-
els). Reduced dimension (plane stress) formulation was presented in [68]. For-
mulation applying to a general rate-type constitutive model of soil was discussed
in [31]. Important issues specific to the analysed class of problems, discussed in
the publications, include the crucial role of the algorithmic constitutive tangent
stiffness operator (consistent with the time integration scheme) |31, 62, 64, 67,
68, 128, 129] and the problem of discontinuity of sensitivity gradients [67, 68, 77].
For large deformation elasto-plastic models, sensitivity analysis was discussed
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in [118] (rigid-plastic approach only), [51, 96, 124, 125] for one-dimensional case
(trusses), [21, 59, 65, 72, 78, 134| for 3-d models based on additive elastic-plastic
strain decomposition, and finally in [6, 7, 23, 58, 60, 71, 80, 119, 133] for models
based on multiplicative elastic-plastic decomposition of the deformation gradi-
ent. Formulations of sensitivity analysis in the velocity description, including
the flow approach concept, can be found in [3, 4, 29, 54, 65, 82, 136, 137].

The references above include both statical, dynamical and structural stability
formulations, applicable in the formalism of the finite as well as the boundary el-
ement method. At the level of constitutive formulations there are no significant
differences between these areas of applications. Besides, they include formula-
tions of both sizing and shape parameter sensitivity analysis. Despite different
nature and way of description of both the types of input parameters, the shape
and non-shape sensitivity can be apparently treated in a uniform manner, upon
introduction of the reference volume concept [62].

1.1. Scope of the thesis

The scope of the thesis is limited to first-order parameter sensitivity analysis in
geometrically linear and nonlinear problems of computational isothermal elasto-
plasticity of metals, including elasto-viscoplasticity. The contents is in the main
part a compilation of the author’s original developments performed in the years
1994-2006 at the Institute of Fundamental Technological Research in Warsaw,
partially in cooperation with colleagues from the Department of Computational
Science, and published in [64, 65, 67, 68, 71-73, 132, 133]. Attention will be
focused on static and quasi-static processes, however, extensions towards dy-
namic computations will be discussed, too. Issues related to structural stability
and vibration analysis, leading to determination of the system’s eigenvalues and
eigenvectors, will not be considered.

All the initial-boundary problems considered in the thesis will be discussed
in terms of the approximate solution techniques based on the finite-element dis-
cretization. This will not affect generality of the discussion as long as the sizing
and material parameter sensitivity is considered. In the case of shape parameter
sensitivity, the notion of the design-independent reference configuration will be
strictly related to the definition of the parent configuration of an isoparametric
finite element. Applicability of the resulting algorithms within the frame of other
approximate solution techniques may thus not be straightforward for this case.

The contents of the thesis is organized as follows. Chapter 2 presents the gen-
eral idea of sensitivity analysis of nonlinear mechanical systems. It starts with
a general formulation of the primary problem in both continuum and discrete
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variables, and with definition of two basic notions of sensitivity analysis, i.e.
design variables and performance functionals. Two fundamental approaches to
the sensitivity analysis, continuum and discrete, are distinguished and described,
with discussion of their advantages and drawbacks, and with indication of cer-
tain intermediate ways. Further, the discrete approach is discussed in detail,
with two alternative solution strategies, direct differentiation method (DDM)
and adjoint system method (ASM). The analytical, semi-analytical and finite-
difference methods of determination of sensitivity gradients are presented and
reviewed. Finally, the key issue of elasto-plastic response differentiability is risen
and its consequences regarding possible discontinuity of the sensitivity solution
are discussed.

Formulation of DSA requires deep and detailed understanding of the primary
problem formulation. In Chapter 3, the primary problem of static deformation
of an elasto-plastic body is presented in detail. It includes constitutive formula-
tions of elasto-plasticity and elasto-viscoplasticity in both small and large defor-
mations, and general finite element equations of the global equilibrium problem.
Even though the material virtually does not contain original contributions of
the author, it seems necessary to place it in the thesis, as the following formu-
lations of sensitivity in Chapter 4 extensively recall the notation and details of
the formulation of the primary problem.

In Chapter 4 the sensitivity formulation associated with the primary problem
is derived and presented. This is the main original part of the thesis. Attention
is focused on computational aspects of DSA | including, among others, the role of
the consistent, algorithmic tangent operator. The problem of shape sensitivity is
also addressed — it is demonstrated that there is actually no fundamental differ-
ence between the DSA formulation for shape and non-shape design parameters.
Further, the equations appearing in the incremental constitutive procedures of
elasticity and elasto-plasticity, cf. Section 3.3, are differentiated with respect
to design-dependent input parameters in order to determine partial and total
design derivatives of response state fields necessary in the global sensitivity for-
mulation. Linearity of the sensitivity formulation at a time step is underlined,
even in presence of highly nonlinear plastic consistency equations in the consti-
tutive model. Resulting formulations are presented in the form of closed-form
algorithms, readily implementable in computer programs. A number of compu-
tational examples illustrate the presented computational algorithms and inspire
discussion.

Chapter 5 contains extension of the considerations towards dynamic analysis
of elasto-plastic structures. Both primary and associated sensitivity equations
are presented in the formalism of the finite element method, for both implicit
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and explicit solution strategies. Our attention is mainly focused on explicit
algorithms of dynamic analysis, first because this approach is most popular
in practical engineering applications due to its simplicity and efficiency, and
also because the sensitivity analysis in the case of explicit dynamic formulation
follows a different strategy than in the case of statics or implicit dynamics. The
mathematical derivations are again illustrated with computational examples.

Chapter 6 contains remarks on implementation of sensitivity algorithms in
finite element codes. Practical difficulties (a large amount of additional coding)
and advantages (automated character of the sensitivity formulae) are pointed
out. The issue of automatic code generation at various levels of formulation is
discussed.

In Chapter 7, conclusions are formulated and directions of desired future
research are outlined.

1.2. Remarks on notation

In view of a large variety of mathematical objects appearing in the text, the
notation may be confusing to the reader. Limited choice of available alphabet
letters, type faces and other symbols makes it virtually impossible to distin-
guish so many different classes of variables, operators, indices, etc., in a clear,
unambiguous manner. The following general remarks are intended to minimize
possible misunderstandings by explaining rules governing the notation assumed
by the author. Many of explanations given below are formulated in more detail
further in the text, wherever a particular notation is introduced, it seems yet
worthy to gather them in this place so that the reader can easily locate them
without tedious tracking the entire book.

Coordinates

Everywhere in the text, the Cartesian coordinate system is only used, defined by
the coordinates @ = {z;}, i = 1,2,3. Time is denoted by ¢ and the coordinates
of a moving material point in the time instant ¢ are denoted by x!. Coordinates
of the point in the reference configuration are denoted by X (cf. Section 3.1.1).
Differentiation of any field a(X,t) with respect to the reference coordinates X
is denoted by a; while with respect to time — with the dot accent a.

The notation & = {&;}, i = 1,2,3, is used for dimensionless coordinates of
the parent isoparametric finite element as well as for coordinates of the parent
design-independent configuration in shape sensitivity (cf. Section 4.1.2). Differ-
entiation of any field a(§) with respect to &; is denoted by a; .
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Scalars, vectors and tensors in the 3D space

Scalars are denoted by normal face italic letters (latin or greek, small or capital).

Vectors in the absolute notation are denoted by small bold face italic letters
(e.g. u, f) while in the index notation — with corresponding normal face letters
(e.g. u;, f;) with subscripts taking the values 1,2,3.

Second rank tensors in the absolute notation are denoted by bold face italic
letters (latin or greek, small or capital, e.g. F', €, s) while in the index notation
— with corresponding normal face letters (e.g. Fj;, €;;, sij) with subscripts
taking the values 1,2.3. In the large deformation description, tensors defined
in the reference configuration (Lagrangean) are distinguished by capital letters
(e.g. the second Piola—Kirchhoff-type stress tensors T, A), contrary to those de-
fined in the current, moving configuration (spatial) denoted by small letters (e.g.
the Kirchhoff-type stress tensors 7, a). In the small deformation description,
tensors are denoted by small letters (e.g. Cauchy stress o, linear strain €).

Fourth rank tensors in the absolute notation are denoted by bold face gothic
letters (e.g. the constitutive stiffness tensor €) while in the index notation —
with corresponding normal face gothic letters (e.g. €;;;) with subscripts taking
the values 1,2,3. Similarly as above, in the large deformation description, capital
gothic letters indicate Lagrangean tensors (e.g. €) while small letters — spatial
tensors (e.g. ¢). An exception is the linearized, small-deformation constitutive
tensor denoted by a calligraphic letter C.

In the index notation, the Gauss summation convention is applied. A simple
product is denoted e.g. by vw = vjw; or on = {o;;n;}. The full product of
tensors is denoted by a colon : , e.g. o : € = 45645 or € : E = €55, Epy).

FE vector/matrixz representation of tensors

In Sections 3.3.3, and 4.2.3, where the reduced-dimension formulations (1D bar,
plane stress) are discussed, the so called finite element vector/matrix notation
is used in which symmetric 2nd and 4th rank tensors are represented by 6 x 1
column arrays (vectors) and 6 X 6 matrices, respectively. Detailed explanation is
given in the beginning of Section 3.3.3. Such matrices are denoted with bold face
upright letters (e.g. o, C) corresponding to their italic or gothic counterparts
(e.g. o, €) in the absolute tensor notation.

Global discrete formulation arrays

Global arrays in discrete formulations (e.g. global vectors and matrices in the
finite element formulation) are denoted with sans-serif upright letters, bold face
in the absolute notation (e.g. q, K) or normal face in the index notation (e.g.
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da, Kag). To avoid misunderstanding, the indices defining elements of such
arrays (and running from 1 to the global number of discrete parameters of inter-
polation functions) are denoted with small greek letters, contrary to small latin
letters, reserved either for spatial coordinate indices or for subsequent time in-
stant numbers. Arrays with mixed types of indices, like e.g. shape functions &,
or the geometric array B;j, , are never used in the absolute notation. Indices
being the node counters in the finite element mesh are denoted by capital latin
letters (A, B, ...)

Other arrays

Arrays of variables of different types are denoted by small bold face latin upright
letters. Examples are h (array of scalar design parameters), G (array of scalar
design performances), p (array of input fields), z (array of scalar and tensorial
constitutive state parameters). The use of the same type face as in the case of
the (mentioned before) f.e. vector/matrix representations of symmetric tensors
should not be confusing since in both cases we have to do with simple arrays of
numbers (or of other objects).

Generally, in the notation of arrays, curly braces {---} denote a column-
aligned 1D array (vector) of the displayed components (usually separated with
commas for better legibility). Brackets [--:] denote either a row-aligned 1D
array (vector), or a two- or more-dimensional array (matrix) of the displayed
components.

Differentiation of a quantity with respect to components of a column vec-
tor of parameters yields a row vector of derivatives. E.g., if A = A(q) and

q ={d1,92,...} then % = [%, %, ...]. If A(q) is a column array of func-
tions of q, then the derivative % is a matrix whose subsequent columns are

arrays g—?_. Hence, according to the standard notation of the vector/matrix

calculus, we can write d(-) = %I) dq, independently of the type (scalar, array,
tensor, etc.) of (+).

Design derivatives

The design derivative of any function (-), i.e. the row-aligned array of its deriva-
tives with respect to components h; of h, is denoted by dp(+). The explicit design
derivative, i.e. the partial design derivative expressing dependence of (-) on h
only via those arguments of (-) whose design-dependence is explicitly known, is
denoted by On(-) (cf. Section 2.1.3). The notation dpi(-) stands for the partial
design derivative computed at the argument b (of any type) kept constant, i.e.
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dn(-) = dup(-) + % dpb (cf. Section 4.1). The notation d§,(-) = [dn(-)] (-) !
denotes a ‘normalized’ design derivative (deprived of the units of (-))

Other notation

The hat ~ over a symbol denotes a known value of the input variable.

The tilde ™ has several meanings. In the transit between continnum and dis-
crete equations of structural mechanics, it indicates variables of intermediate
formulations, e.g. discretized in space but continuous in time (cf. Section 2.1).
In the global equilibrium formulation, it denotes generic measure of stress and
the associated work-conjugate strain variation (i.e. different particular pairs of
tensorial work-conjugate stress and strain variation measures can be substituted
under (7,0€), cf. Section 3.1.2). Elsewhere, the tilde indicates the stress-free
deformed configuration in the kinematical model of large-deformation elasto-
plasticity based on the multiplicative split of the gradient deformation (3.66).
In the kinematical description of the enhanced assumed strain elements (Sec-
tion 3.4.4), the tilde denotes a value averaged over the entire element volume.

The bar ~ over a symbol has several meanings, too. In description of the
deformation state it denotes the isochoric part of a tensor describing deforma-
tion (like deformation gradient F' = J _%F, Cauchy—Green deformation tensors
C, b, etc., cf. Egs. (3.33)(3.35). In the kinematical description of the enhanced
assumed strain elements (Section 3.4.4) it denotes the enhanced measure of
such a tensor (e.g. F = (J/J)F). The two meanings of this notation used
with the same types of tensors may lead to confusion, however, both are so well
grounded in the tradition of the subject literature that it seems perhaps even
more confusing to assign another notation to any of them.

Ly(+) denotes the objective Lie derivative of a spatial tensor (-) (cf. e.g.
Eq. (3.19)). d°(-) stands for the analogous objective differential of the tensor
(i.e. computed with the same formula as the Lie derivative, with time derivatives
replaced by differentials, Eq. (3.97)).

The superscripts / and ” at a function symbol denote single and double dif-
ferentiation of the function with respect to its argument. This usually refers to
certain plastic constitutive functions (hardening functions) where the argument
of the differentiation is the equivalent plastic strain eP.

In discussion of reduced-dimension formulations, the transversal components
of stress and strain are denoted with the subscript L (e.g. o) ) while the longi-
tudinal (or in-plane) components — with the subscript || (e.g. ).



Chapter 2

Concepts of sensitivity analysis of nonlinear
systems

This chapter presents the general idea of sensitivity analysis of nonlinear me-
chanical systems. First, the primary problem is briefly formulated, and the
two basic notions of sensitivity analysis, i.e. design variables and performance
functionals, are introduced. Then, two fundamental approaches to the sensi-
tivity analysis, continuum and discrete, are distinguished and described, with
discussion of their advantages and drawbacks, and with indication of certain in-
termediate ways. Further, the discrete approach is discussed in detail, with two
alternative solution strategies, DDM and ASM. The analytical, semi-analytical
and finite-difference methods of determination of sensitivity gradients are pre-
sented and reviewed. Finally, the key issue of elasto-plastic response differen-
tiability is risen and its consequences regarding possible discontinuity of the
sensitivity solution are discussed.

2.1. General formulation of the problem

The sensitivity of a structural system response to variations of its parameters is
one of the most important problems necessary for proper understanding of the
system performance. In fact, it is now widely acknowledged that any reliable
approach to practical structural engineering problems should provide the analyst
with an assessment of not just the response itself, but also of its parameter
sensitivity.

2.1.1. Primary problem

Before we refer in our considerations to analysis of response sensitivity, let us
first identify the primary problem, i.e. the problem of structural mechanics. This

11
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is the problem whose solution is of the analyst’s primary interest and which is
going to be the subject of sensitivity analysis.

A structural system with defined geometry, boundary conditions, loads, etc.,
must obey physical laws which are expressed in the mathematical form as a sys-
tem of partial differential equations with appropriate initial and boundary con-
ditions,

Flr(z,t), p(z,1)] = 0. (2.1)

F denotes a differential operator acting on the unknown space-time fields, gen-
erally denoted by r and referred to as response, and on the known fields p being
the problem input. Depending on the particular problem nature, the response r
may include displacements, stresses, strains, constitutive state parameters, tem-
perature, pressure, etc. (all understood as space-time distributions), while such
quantities as geometry, material properties, prescribed loads and kinematical
boundary conditions constitute the input fields p.

Solution of the problem (2.1) is typically sought for in its approximate form
with the use of generally understood numerical methods. Without coming into
details of such methods and without introducing particular formalisms of e.g. the
finite element method, or the boundary element method, etc., we can generally
say that their essence is to transform the distributed parameter system in which
both the given input p and the unknown response r are fields on a continuous
domain (x,t) onto a discrete parameter system

F(q,p)=10 (2.2)

in which p and q are arrays of discrete values while F is an array of nonlinear
functions of q and p. The unknown components of q and the known components
of p play the role of parameters that define the approximate response r(x,t)
and the approximate input fields p(x,t) according to the scheme

p(z,t) =~ p(p,x,t), r(z,t) = t(q,x,t), (2.3)

in which p and t are explicit functions of their arguments provided by the
particular numerical method used.

If the lengths of the arrays F and q are the same, Eq. (2.2) is a nonlinear
algebraic system of equations that can be solved with respect to q. In practice,
q is frequently obtained as a solution of a series of smaller systems of equations
involving separate parts of g, usually associated with subsequent discrete time
instants.
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Transformation from (2.1) into (2.2) requires discretization of the structural
domain in both space and time. Typically, the space and time domains are dis-
cretized independently, which makes possible intermediate, distributed-discrete
formulations situated between (2.1) and (2.2). An example of such a formulation
is

Ié[f](t), ﬁ(t)] =0, (2.4)

in which the array of space-discrete parameter functions of time q(t) is the
unknown, while the space-discrete transient input is defined as an array p(t).
The operator F denotes an array of differential operators acting on arrays of the
mentioned time functions.

The formulation (2.4) is just one of possible examples; we can also mention
e.g. different levels of time-discretization (for global system equations and for
local constitutive equations) in which the interpolation/integration rules do not
necessary need to be the same. Generally, the pass from distributed to discrete

distributed
parameter
formulation
Flr,p] =0

input p(x,t) —» — response r(x,t)

various stages of discretization
and corresponding intermediate
distributed-discrete formulations

discrete
parameter
formulation

F(a,p) =0

input p — —— response q

Figure 2.1. Primary problem of structural mechanics  distributed vs. discrete
parameter formulations
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parameter formulations can be graphically depicted with the scheme presented
in Fig. 2.1.

2.1.2. Performance functionals and design parameters

In practice, analysts are usually not interested in the entire response fields r
being the solution of Eq. (2.1). For them, the term response denotes rather
a number of certain particular quantities characterizing the structural response
from the engineering point of view. The quantities, referred to as response
functionals or performance functionals, are denoted by Gr(x,t), p(x,t)]. They
are explicitly defined functionals of the given space-time fields. Their values may
be scalar-, vector-, or tensor-type, however, without much loss of generality, we
can limit ourselves in this study to only scalar ones. Let us denote by NN, the
total number of performance functionals.

Thus, having solved the system (2.1), we obtain the ‘raw’ distributed re-
sponse r(x,t) that can be utilized to quantify the system performance G, un-
derstood as a column-aligned array of functionals

G[r,pl = {Gi[r,p], Go[r,p], ..., Gn,[r,P] }. (2.5)

Analogously, the raw discrete response q obtained as a solution of (2.2) can be
used to determine an approximate value of the performance G that becomes in
this formulation an array G of IV, explicit scalar functions

G(q,p) = {Gi(a,p), G2(a,p). ..., Gn,(a,p) }. (2.6)

Let us now define by
h={hi, ho,..., hn,} (2.7)

a column-aligned array of scalar parameters called design parameters that affect
in an explicitly known way the input fields p(x,t). Thus, we may write

p = p(x,t; h). (2.8)

In many cases the dependence of p on h may have a trivial, Boolean form —
if, e.g., the Young modulus distribution, constituting a part of the input p, is
uniform (F(x,t) = const = E) and a design parameter h; is identified with its
value E, then the derivative dp/0hy takes the uniform value 1 for the Young
modulus and 0 for all the other input fields (unless they somehow depend on F,
like e.g. the shear modulus G). However, e.g. shape parameters (i.e. design
parameters defining geometry of the structure, like coordinates of characteristic
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points, curvature radii, etc.) may affect many different input fields in a quite
complex manner. Thus, the general form (2.8) of input design-dependence will
be retained in the following considerations.

The name design parameters suggests that values of the parameters h;, i =
1,..., Ny, are all subject to the designer’s choice. Recalling explanations given
in Chapter 1, this notion will be given a broader sense in this dissertation —
h; will be generally understood as parameters of any nature that may affect
the input fields. Particularly, parameters characterizing geometric or material
imperfections may also enter the set h. Since mathematical formulation of such
dependence is the same for all types of scalar parameters, this naming convention
should not affect the generality of the following derivations.

In view of the above definitions, we may modify the diagram of Fig. 2.1 and
present the primary formulations as “black-boxes” that determine the system
performance based on the given design, see Fig. 2.2. Explicit relations between
distributed or discrete input and h as well as those between performance mea-
sures and the distributed or discrete response enter the boxes together with the
equation systems (2.1) or (2.2).

distributed
design h —— parameter —— performance G
formulation

various stages of discretization
and corresponding intermediate
distributed-discrete formulations

discrete
designh —— parameter —— performance G
formulation

Figure 2.2. Primary problem of structural mechanics — distributed vs. discrete
parameter formulations (modified)
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2.1.3. Sensitivity problem

If p = p(z,t;h) and r is the solution of the system (2.1), it is obvious that
r =r(x,t;h), too, i.e. Eq. (2.1) becomes

Flr(x,t;h),p(x,t;h)] = 0. (2.9)

In this case, however, the relationship between r and h is by no means explicit.
For any arbitrary value of h = ﬁ, the corresponding field r(z, t; fl) can be deter-
mined with the methods discussed above, but the general relationship r(z, t; h)
could only be sought for in either a tabularized form, by subsequently solving
the system (2.9) at various values of h, or in an approximate analytical form,
as a Taylor series expansion around a known solution for h = fl,

r(z,t;h) = r(x,t;h) 4+ dyr(z, t;h) (h - h)
+1h-h)Tdir(x,t;h)(h—h)+ -, (2.10)

where the following notation has been introduced,

_dt) _ o) o() ()

dh() = dh = 8—hl s 8—]'1/2 Y ey 8hNd . (211&)
0%() 9%() 92()
a3 ohioh; " Ohidhy,
d?(: . . .
di() = dli2> = : : : . (2.11b)
9%() 9%() 92(,)
8hNd8h1 ahNdahg e Bh?vd

The formulation (2.10) is only possible if the above ordinary derivatives exist.
Here we sustain this a priori assumption, making also reference to Section 2.2.4
where the extension towards discontinuous (directional) design derivatives is
discussed.

Expressing a design-dependent performance functional G[r(x,t; h), p(x, ¢; h)]
as an implicit function of design, G(h), we can consequently approximate its
value either by interpolation of tabularized results for certain values of h, or by
employing an approximate form analogous to (2.10),

G(h) =G(h) +dnG(h) (h —h) + 5 (h—h)TdiG(h) (h—h) +--- . (2.12)

In both the series, (2.10) and (2.12), all the derivatives with respect to h are
unknown.

The essence of design sensitivity analysis (DSA) of a distributed parameter
system (2.9) is to determine all the performance gradients with respect to de-
sign h that are necessary to approximate changes of G, Eq. (2.5), corresponding
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to small variations of h by employing a Taylor series expansion (2.12) around
a known solution at a given primary design h. The gradients will be referred
to as design sensitivities, cf. classical definitions of e.g. [41, 65]. Depending on
the order of the gradients we may talk about first- and higher-order sensitiv-
ity analysis (e.g. sensitivities of G employed in Eq. (2.12) are displayed up to
the second order). In this dissertation, attention will only be focused on the
first-order sensitivity analysis methods.

Determination of the first order design sensitivities of the performance func-
tionals, dnG, at given design parameters h requires

e solution of the distributed parameter sensitivity problem, complementary to
the problem (2.1),

D[dhr(wa ta h)7 I‘(CL‘, ta h)? ahp(wa ta h)a p(ma tﬂ h)] =0. (213)

in which the unknown field is the sensitivity dnr(z,¢;h), and whose par-
ticular formulation depends on a particular form of the primary problem
operator F, and

e determination of the performance sensitivity functionals
dhg[dhr(ma t; h)7 I‘(CE, l; h)? ahp(ma L h)a p(wa l; h)] (214)

whose particular forms again depend on the particular forms of G; .

In the above formulation, it is assumed that the primary response solution
r(z,t;h) and values of the functionals G are known. It is once again stressed
that design-dependence of the input p is explicit and thus the design derivatives
of p can also be explicitly determined. To underline this fact, the notation
On(+) for explicit design derivative is introduced and used in Eq. (2.13) for p (so
that known and unknown design derivatives can be easily distinguished in the
formulation).

Looking at the formulae (2.13)—(2.14) it is easy to notice that their combina-~
tion may lead to a formulation in which d, G is determined directly as a solution
of a differential equations system, without intermediate determination of the
field dpr(e,t;h). Such a formulation, if available in a closed form, is referred
to as the adjoint system formulation of the DSA.

Similarly as the primary problem of structural mechanics, the sensitivity
problem (2.13) generally requires numerical methods in order to obtain a solu-
tion, which is obviously approximate. Again, a variety of methods remains to



18 Chapter 2. Concepts of sensitivity analysis of nonlinear systems

the analyst’s choice, all of them finally leading to a discrete parameter sensitivity
problem that can be expressed in the following general form

D(dna,d,9up,p) =0. (2.15)

Here, D is an array of nonlinear functions of their arguments, dnq, q,
Onp and p, which are arrays of parameters defining, for an assumed in-
terpolation/integration scheme, the approximate fields dnr(z,t;h), r(z,¢;h),
onp(z,t;h) and p(z,t;h), respectively. Assuming g to be known from the pri-
mary problem solution, Eq. (2.15) constitutes an algebraic system of equations
that can be solved against the only unknown array dnq. Sensitivities of the per-
formance measures G(q, p), expressed in the discrete formulation as analytical
functions of the arrays q and p, can be then obtained from the chain rule'

dnG = 88—(; dnq + 88—(5 Onp, (2.16a)
or, utilizing explicit dependence of G on p, and thus also on h, and introducing
the notation 04G = 0G/0q,

th = 8qG dhq + 6hG. (2.16b)
The performance sensitivity d, G is an array of N, x Ny functions of q and p,

9G1(q(h),p(h))/0hy  ---  9Gi(q(h),p(h))/dhn,
dnG = : :

0Gx, (a(h),p(h)/Oh1 -+ G, (a(h), p(h)/Dhx,

The numerical method employed to transform the distributed parameter sen-
sitivity problem (2.13) to the discrete parameter form (2.15) does not need to
be the same as the one applied in the primary analysis formulation. In partic-
ular, space and time discretizations, interpolation functions, integration rules,
as well as many other numerical details, may differ in both the cases. Since
accuracy and stability requirements for the sensitivity solution may be different
than those for the primary problems, it seems natural to conclude that e.g. the
space/time discretization should be defined separately in both the problems.

On the other hand, it is obviously possible, and often quite advantageous, to
use exactly the same numerical approach to discrete solution of both the primary
and the sensitivity problem. It can be easily verified that, in such a case, the

! According to our previously introduced convention, arrays like dnG, (0G/dq), (G /dp)
are understood as matrices whose subsequent columns are derivatives of G with respect to
subsequent components h; , qo and pq , respectively.
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formulation (2.15) can be derived directly from design differentiation of the
discrete primary problem (2.2),

F(q(h),p(h)) =0. (2.17)

Since the operator F is merely an explicit nonlinear function of its displayed
arguments, its differentiation with respect to h yields the following equation

OF(q,p) OF(q,p)
————dpq = ——12 0 2.18
9q op 0P (2.18a)
which is a particular form of Eq. (2.15). Utilizing again explicit dependence of
F on p, and introducing the notation K = —0F/0q, it can be rewritten as
K dhq == 6hF . (2.18b)

At a known primary solution q(h) for a given h, the above equation is a linear
system of algebraic equations with respect to the unknown array dpq, with
the square coefficient matrix K. More strictly, it is a series of Ny systems
of equations, one per each design parameter h;, with the common coefficient
matrix K and different right-hand sides.

Combining Egs. (2.16) and (2.18), we may express the sensitivity of perfor-
mance functionals as
oG [aF} “LOF | 0G

-5 |5 +—] Onp = 0qG K ' O4F + 0,G.  (2.19)

dn,G = —
b [ dp Op

Resuming, in the formulation of a discrete parameter sensitivity problem
complementary to the primary problem expressed in the continuous form as (2.9)
and in the discrete form as (2.17), two alternative ways can be considered:

(i) derivation of a distributed parameter sensitivity problem in the form (2.13)
followed by application of a numerical approach (generally different than
the one employed in discretization of (2.9)) leading to the general formula-
tion (2.15)~(2.16),

(ii) direct design differentiation of the discrete parameter primary problem (2.17)
leading to the formulation (2.19), being a particular, detailed form of (2.15)—
(2.16).

The advantage of (i) is the mentioned possibility of adapting the chosen numer-
ical schemes to requirements of stability and accuracy separately for each of the
two problems. Its drawback, however, is the not always easy derivation of the
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sensitivity problem, especially in the case of complex forms of the operator F,
and the necessity of separate numerical implementation of the two problems.
The advantage of (ii) is simplicity of practical derivation and implementation,
frequently available by employing more or less automatized methods. Addi-
tionally, results of sensitivity analysis performed with the method (ii) appear
to be easily verifiable numerically — in fact, up to the accuracy of numeri-
cal roundings, they are the limit values of approximate finite-difference design
derivatives of the discrete primary results of (2.17) determined for perturbed
designs h + Ah, with Ah — 0. Checking this convergence may thus be a good
test on correctness of the problem formulation and its numerical implementa-
tion. This obviously may not be the case when using the approach (i) where
such convergence cannot be guaranteed.

The two ways defined above are in fact not the only approaches to sensitivity
problem formulation. One can imagine a number of intermediate formulations
combining partially features of the two extreme ones. Recalling e.g. the primary
formulation (2.4), being one of intermediate steps between the distributed and
discrete parameter systems, we can easily imagine a complementary sensitivity
formulation

Bldnd(t; h), &(t; ), dwp(t; h), p(t; h)] = 0, (2.20)

employing the same spatial discretization, and transform it to the form (2.15)
with the use of an approximate time-integration scheme, not necessarily the
same as the one employed in the primary analysis, when passing from Eq. (2.1)
to Eq. (2.2).

Various approaches to sensitivity analysis discussed above and their relations
with the approaches to the primary problem solution methods can be graphically
summarized as in Fig. 2.3. The approach referred to as (i) in the above consid-
erations corresponds in the diagram to the most upper and right limit path of
design-differentiation and discretization sequence while the approach (ii) — to
the opposite, most left and lower path. All possible intermediate strategies are
situated within the area between them.

In further considerations, our attention will be focused on the latter approach
in which the fully discretized primary problem is the basis for the sensitivity
problem formulation. Being aware of all its drawbacks mentioned in this section,
we underline once again its advantages:

e more simple derivation,

e straightforward numerical implementation and computation cost,
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Figure 2.3. Distributed vs. discrete parameter formulations of primary and
sensitivity analysis problems of structural mechanics

e casy and reliable verification of results,
to which we can add one more, not mentioned before,
e possibility of general formulation for different types of primary problems.

In fact, it must be noted that different types of the differential operator Flr, p]
and the functionals G[r, p] require different specific mathematical methods in
formulation of the distributed-parameter sensitivity problem (2.13) (2.14). The
intermediate distributed-discrete formulations do not remove this disadvantage.
In the fully discrete formulation, however, the expressions F(q,p) and G(q, p)
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are no more differential operators and functionals — they become merely func-
tions of their discrete design-dependent arguments. Thus, no matter what their
particular forms are, the sensitivity problem can be written down in a unified
way in terms of their derivatives with respect to the arguments, or, employ-
ing the chain rule, in terms of their design derivatives, cf. Eq. (2.19). Such
formulations will be subject to detailed investigation in the sequel of this thesis.

2.2. Solution methods

2.2.1. Primary problem: Newton iteration

Let us recall the fundamental primary problem of structural mechanics in the
discrete-parameter form (2.2)

F(q,p) =0. (2.21)

It is stressed that no assumptions have been made at this stage about a partic-
ular numerical method used to derive the above form. The discrete array q is
thus not associated with e.g. nodal displacements or local values of any other
fields; it is only assumed that q contains parameters that uniquely define, upon
assumed interpolation and integration schemes, all the space-time state fields
constituting the approximate structural response. Analogously, the given ar-
ray p uniquely defines all the approximate fields that constitute the problem
input data.

Since Eq. (2.21) is a nonlinear system of algebraic equations with respect
to q, the general solution strategy utilizes the Newton iteration method

(2.22)
=1+ 1

in which the notation K = —0F/0q introduced in Section 2.1.3 has been em-
ployed. The iteration loop contains a system of linear equations, solved with
respect to subsequent solution correctors §q until convergence is achieved. It is
assumed that the initial predictor q(©) is chosen so as to ensure convergence of
the procedure.

Only in a limited number of cases (e.g. linear elasticity) the formulation (2.21)
is linear with respect to q. In these cases, the formulation (2.22) is reduced to
a one-time solution of the linear equation system

Kg=F(0,p).
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The size of the array q and the corresponding number of equations may be
extremely large in realistic transient large-scale problems. Thus, the solution
strategy is frequently modified in order to decrease the problem size by utilizing
certain features of assumed approximation schemes. For example, introduction
of a unique time discretization (tg, t1, ..., tn, ...) in the entire structure vol-
ume and association of certain parts of q with particular discrete time instances
leads to the following division of the column-aligned response array;,

a={dy,91,---,9,, -} (2.23)

If the numerical formulation allows to also associate particular equations in the
array F with subsequent time instants

F={Fo,Fi,....Fp, ...}, (2.24)

the system (2.21) can be divided into a series of (generally coupled) systems of
equations

F.(@,p)=0, n=0,1,... (2.25)

with respect to unknown arrays q,, ,
If the problem is path-independent (e.g. large-deformation elasticity), then

F. = Fn(q,,p) (2.26)
Thus, the coefficient matrix K has the following form,
i Ky 0 --- 0 7
0 Ky --- 0
: . . F
K= : : o , K, = —g—n. (2.27)
0 0 - K, O

The systems for different time instants are then entirely uncoupled and can be
separately solved for each q,,. The Newton loop (2.22) at each time instant ¢,
assumes the form

—r KD6q, = Fu(q?,p) —» qUt) =qW t6q, —
w09 (a,’,p) qa, q,’ +dq (2.28)

=1+ 1

Although it seems natural to proceed with the solutions in the sequence of
increasing time instants, there is no formal restriction against any other order
of solving the systems for different instants ¢,, in this case.
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For path-dependent problems, the response at t¢,, depends on the response in
previous time instants, i.e.

Fn - Fn(qnaqn—lu"'vqlap)' (229)

Thus, the coefficient matrix K has the following form,

[ Ky; 0 -0
Koy Koo oo 0
) . i Fn
K= : : o , Kym = —2 . (2.30)
Kni Kpz oo Kpy oo Wm

The systems for different time instants can still be separately solved for each q,, ,
however, the solutions associated with the previous time instants (¢,, < t,) are
necessary to proceed with computations in the n-th step:

— K éq, =F,(a?.q,_1,....a5,p) — aqi"V=q{)+dq, —

=1+ 1

(2.31)

(as it can be seen, explicit determination of the matrices K, , m < n, is not
necessary). The solution strategy requires in this case that the systems are
solved in the sequence of increasing time instants ¢,, and that results of the
previous time instants are stored during the analysis. This increasing from step
to step amount of storage can be frequently limited by expressing F,, in an
equivalent form as

F’I’L = Fn(qn7 S’n—17 p) (232&)

where s,_1 is an array of discrete state variables, implicitly dependent on the
history (q,,_1,---,d;), but explicitly defined by a recursive update formula

Sn = Sp(d,,, Sn—1,P). (2.32b)

This formulation allows to only store and update the array s (whose size is
constant) instead of the entire history of q (whose size gradually increases during
analysis).

It is noteworthy that, at the n-th time instant computations of a path-
dependent problem, there is in fact no reason to conceptually distinguish be-
tween the input array p and the already known response arrays qy,...,q,_j or
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their functions s,,_1 , which become input data to the current step computations
in the same sense as p. We can thus define an ‘extended’ input array

P, =1{P.4y;---. 4,1} or  p,={p,sn-1} (2.33)

and formulate the current step problem as

Fn(a,,p,) = 0. (2.34)

The corresponding iteration loop takes then the form

— K{)da, =F.(a.p,) — ai"V=q})+dq, —

n '¥n n

(2.35)

=1+ 1

Clearly, the path-independent formulation appears to be a special case of the
above, with p,, =p.

2.2.2. Sensitivity problem: DDM and ASM

Let us recall Egs. (2.18b) and (2.19) that allow to express the design gradients
(sensitivities) of performances G as

dpG = 04G K op,F +04,G . (2.36)
————
dnq

Let us also recall that the derivatives O,F and 0, G appearing in this formula
describe the explicit design dependence of F and G, respectively, i.e. they in-
clude entire design-dependence through the input p(h) but not through the
response q(h).

One of natural ways to determine the solution of performance design sensitiv-
ity analysis (DSA), further referred to as direct differentiation method (DDM),
consists in determination of the response sensitivities d,q from Eq. (2.18b)

K dnq = OuF (2.37)

and substitution to Eq. (2.36).

As it was mentioned, Eq. (2.18b) constitutes a series of linear systems of Ny
algebraic equations that must be solved against each particular design derivative
dq/dh; with corresponding right-hand side vectors OF /Oh; = (OF /Op)(Op/0h;).
The coefficient matrix is the same in each case and equal to the matrix computed
in the Newton iteration loop (2.22) during the primary analysis. More strictly,
it is equal to the matrix computed in the last iteration, when the solution
predictor q() best approximates the accurate solution q.
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There are three important consequences of the above observations. First, it is
obvious that the sensitivity computations must be performed after the primary
analysis computations. Otherwise it is not possible to determine the coefficient
matrix K, being generally a function of ¢. Only in a linear case, DSA may go
in parallel with the primary analysis, or even precede it.

The second consequence is related to the issue of numerical efficiency. De-
composition of the coefficient matrix in a large system of equations is usually the
most time-consuming procedure in practical computations of structural mechan-
ics. Having the already decomposed (during the primary analysis) matrix K, we
are able to perform the sensitivity analysis at a usually very low cost compared
to the primary problem (however, proportional to the number of design vari-
ables)!. All that is necessary, is a series of back-substitutions of the decomposed
matrix against Ny sensitivity right-hand side vectors OnF.

The third consequence, already mentioned in Section 2.1.3, is the fact that,
no matter how complex and nonlinear the primary problem is, the sensitivity
problem is linear? and thus requires no iteration procedure. This strengthens
even more the conclusion about efficiency of the DSA formulation vs. that of
the primary analysis. Computational examples in Section 4.3 will demonstrate
this advantage of the presented analytical method of sensitivity analysis.

In the case of path-independent transient problems, when the matrix K has
the form (2.27), the sensitivity solution may be sought for separately at each
time step,

K, dng,, = OnFn , (2.38)
right after completion of the primary analysis for this step (i.e. before the de-

composed matrix K,, is removed from the computer memory).

In the case of path-dependent problems, cf. Egs. (2.29), (2.30), we have, for
the n-th time instant,

'Except for formulations with a diagonal matrix (e.g. explicit dynamics) which do not
require decomposition and thus numerical costs of sensitivity analysis (per one design variable)
are comparable to (or even higher than) those of the primary analysis, see Chapter 5 for more
details.

2In path dependent problems, when the time-decoupled solution strategy (2.34) is utilized,
we can actually only talk about linearity of DSA at a single time step (see Egs. (2.39)—(2.40))
which, however, does not weaken the following conclusion about efficiency.
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where the explicit design derivative 311 F, = duF can be expressed as

n | frozen q,,

n—1
OnFr = 0uFn = Y Ko dna,, (2.40a)
m=1

or, in a formulation (2.32) with state variables s,

éth = ohF, + il dps, 1. (2.40b)
asnfl

The sensitivity solution is again sought for right after completion of the primary
analysis for this step, and it additionally requires the ‘historical’ sensitivity
solutions dnq;, ..., dpnd,_; that have to be stored along with the primary
solutions from preceding time steps, or the sensitivity dps,_1 that has to be
stored and finally updated according to the formula

dnps, = g—:z dnq,, + % dpsp_1 + 88% Onp - (2.41)
(Distinguishing between explicit and implicit design derivatives of quantities re-
lated to preceding time steps may seem somewhat artificial in the above equa-
tions — in fact, all once computed total response design derivatives at ¢t < ¢,
become explicit input design derivatives to the formulations for ¢t > ¢,, , accord-
ing to the definition of ‘extended’ input p,, (2.33).)

An alternative approach to evaluation of the performance design sensitivi-
ties dp G, further referred to as adjoint system method (ASM), consists in de-
termination of terms in Eq. (2.19) in the following, different order,

dpG = 904G K™! 9yF + 0,G, (2.42)
——
)\T
i.e. first solving the linear system of equations against the adjoint response
array A\,
KT = 9,G", (2.43)

and then substituting the result to Eq. (2.42).

The system (2.43) is in fact a series of N, systems of equations with the same
coefficient matrix KT and with different right-hand sides. Thus, A is an array
of N, solutions of the system.

From the numerical point of view, ASM and DDM are nearly the same. The
same arrays (0qG, OnF, OnG, K™1) have to be assembled and similar operations
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are performed on them. In both the cases we have to do with linear systems
of DSA equations, utilizing the coefficient matrix decomposed in the primary
analysis (and then only transposed in the case of ASM). Our conclusions about
efficiency drawn for DDM remain true for ASM, too. The only remarkable
difference is the number of the back-substitution operations necessary to solve
the systems (2.37) and (2.43), i.e. Ny and N,, respectively. Thus, the main
argument considered when choosing between DDM and ASM seems to be the
computation cost: if IV, > Ny then DDM is more favourable than ASM, and
oppositely.

It appears, however, that this choice may be determined by other circum-
stances, too. Let us consider the case of transient problems with separation of
equations and unknowns as in Eqgs. (2.23)—(2.24). Analogously, we can write

A={A0, A1,y A, b

In the case of path-independent formulations, the coefficient matrix in the sys-
tem (2.43) has the form (cf. Eq. (2.27))

KT 0 .- 0 i
0 Ki .- 0
Kf=1| ¢ © . ST (2.44)
0 0 - K!

and the solution is obtained in exactly the same way as in the case of DDM, i.e.
the sensitivity sub-systems of equations

KIN, = 0,GT,

have to be solved right after each time step primary computations.

In the case of path-dependent formulations, however, the analogy with DDM
is not that straightforward. The coefficient matrix in the ASM system of equa-
tions (2.43) has the form (cf. Eq. (2.30))

r kT kT T 7
Kii Ky - Ky

0 Kyn - Ky

0 0 --- KL
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This again allows to decouple the sub-systems of equations for different time
instances t,,, but their solutions must proceed in the opposite sequence, starting
from the last time instance towards to. This is obviously possible, but all ad-
vantages of DSA regarding efficiency are totally lost in this strategy. All arrays
would have to be either once again assembled and all matrices K,,,, decomposed
(which is extremely time-consuming), or they would have to be stored after each
time step of primary computations until their end (which requires unreasonably
large computer storage resources). Thus, in path-dependent problems, ASM
cannot be considered a suitable method of design sensitivity analysis. In our
further detailed considerations related to sensitivity analysis in elasto-plastic
computations, DDM will be the only approach discussed.

Let us finally mention, that the performance functionals in path dependent
problems are frequently directly defined in terms of the state variables s,

G = G(S0,S1,---,Sn,---,P), (2.45)

which in view of (2.32b) is a particular, recursive example of the general form
G = G(q,p). In this case, Eq. (2.36) must be replaced by a series of update
equations performed subsequently at each t = ¢, ,
0G
dnG,, = dnG, 1 + — dpsn (2.46)
s,
with the ‘initial’ setting d,Go = oG = (0G/0p) Inp and with the ‘total’ value
of dy G obtained only at the final time instant. Obviously, this update scheme
makes only sense in DDM, where dys,, are directly computed at each t = t,, .

2.2.3. Analytical, semi-analytical and finite-difference sensitivity analysis

The methods of sensitivity analysis presented in the previous sections of this
chapter are called analytical. The reason for this is the analytical form of
the performance design derivatives sought for, both in the cases of distributed
and discrete parameter formulations. In the latter case, the solution requires
determination of arrays of certain analytical explicit design derivatives and then
the unknown arrays of analytical sensitivities are evaluated from the solution of
an algebraic system of equations.

The main advantage of the analytical formulations is their efficiency. DSA
appears to be a linear problem (at least at a single time step) that does not
require decomposition of any large coefficient matrix. There is a price to pay
for this, though. The programming effort necessary to implement the methods
in a numerical code is significant, frequently as extensive as implementation of
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the primary algorithm itself. Assembling arrays like OyF in Eq. (2.19) requires
several derivations and writing a substantial amount of code. Thus, a justified
question arises whether approximation of performance sensitivity with a finite
difference formulae

_[0G] _ [G(hi+Ahi) — G(h)

dnG = [m%} R~ [ N (forward f.-d. scheme)  (2.47a)
~ [0G] _ [G(hi) — G(hi—Ah;)

dp,G = [ahi] ~ [ Ah, (backward f.-d. scheme) (2.47b)

or, more accurately,

(central f.-d. scheme) (2.47c)

4, G ~ |:G(hZ+Ahz) — G(hl—Ahz)}

2Ah;

(for small perturbations Ah;) would not be a better choice in practice. Assuming
the methods and numerical procedures for the primary analysis are available on
hand, the solutions for perturbed design can be readily evaluated by repeated
execution of the primary analysis code.

There are two arguments against this choice. First is efficiency. Evaluation
of the finite difference design sensitivities (2.47) requires one or two more runs
of the primary analysis. Thus, the numerical cost of the DSA (per each design
variable) compared to that of the primary analysis is 1 or 2, depending on
whether the forward or central finite-difference scheme is applied. Recalling
considerations from Section 2.2.2 about the coefficient matrix decomposition,
we can conclude that this ratio should be only a small fraction of unity in the
analytical method. And indeed it is, as will be shown later in computational
examples. Thus, the finite difference approach to DSA is commonly criticized
as numerically inefficient.

Another argument refers to accuracy, particularly to the choice of the per-
turbation Ah; for each design parameter. The expressions (2.47) can be proved
to converge to the analytical solution with Ah; — 0 which suggests that a suffi-
ciently small perturbation should ensure good approximation. However, numer-
ical roundings in the machine arithmetics require that the perturbation cannot
be too small, too. Fitting the range of suitable perturbation sizes may be
a problematic issue in practice.

Let us consider a simple computational example of a two-bar symmetric stati-
cally indeterminate truss (Fig. 2.4). Initial length of the bars is ly, the distance a
is a given data, and the vertical position A of the central node is a ‘design’
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Figure 2.4. A statically indeterminate two-bar truss
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Figure 2.5. Results of sensitivity analysis at h = h; left: for a = 0.991,

~ ~

(h = 0.1411y), right: for a = 0.9991y (h = 0.0451)

parameter that affects the value of the initial reaction force R(h). If the elastic
stiffness coefficient of each bar is k, then the reaction force is

I(h) = a? + b2,

2k[l(h) — lp]h
R(h) = i
and it takes the zero value at h = h = \/l(% — a? which is the primary de-
sign value. (Perturbations of this value may be considered imperfections of the
structure.)

Figure 2.5 presents approximate values of the reaction sensitivity with respect
to h for two different initial geometries of the truss, computed with a numerical
code with the finite-difference method and for various perturbation sizes. In the
first test, for h =0.141 lo, the suitable range for Ah is about [5-1075,5.1073] for
the forward and backward f.-d. schemes and is slightly broader for the central
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f.-d. scheme. It is thus quite a wide range but it may become much narrower
when geometry of the structure is modified, see the second test with h = 0.045 lo
in which the suitable range for Ah decreases to [1 - 107°,2-103], i.e. by one
order of magnitude. One can imagine structures and circumstances for which
this range may be even narrower or not exist at all. The left limit of the
range depends on the machine arithmetics precision, so it may be obviously
moved far left by using double- instead of single-precision floating point number
representation. But even then, an arbitrary choice of the perturbation size
suffers from uncertainty about its correct placement in the suitable range, as
there are no strict universal rules to estimate the range’s limits. To make sure
that an appropriate design perturbation has been chosen, the analyst should
in fact perform in each case a number of numerical tests with different orders
of magnitude of Ah and check whether reasonable results are obtained. This
increases the numerical cost of finite-difference sensitivity analysis to even more
than the above reported value of 1 or 2.

There is another approach to determination of sensitivity gradients that al-
lows to enjoy several advantages of both analytical and finite-difference meth-
ods and avoid some of their drawbacks. This approach, called semi-analytical
method, cf. |20, 36], consists in the use of finite difference formulae to only deter-
mine partial design derivatives O,F and d, G in Eq. (2.19) and then to proceed
with the solution by either DDM or ASM as described in Section 2.2.2. In the
forward finite difference scheme, we will have e.g.

S | F _ [Fa(h),p(h+Ah) — Fa(h),p(h)
" dhl frozen q Ahl
where
h—i—Alh:{hl, ho, ..., hj_1, hi-+Ah;, hi+17 R hNd}-

The semi-analytical sensitivity methods perfectly preserve efficiency of the
analytical methods. Moreover, the implementation cost is very low compared
to that of analytical DSA. These advantages make the methods very interesting
for researchers and attract attention of software producers. Implementation of
DSA in e.g. ABAQUS finite element system [1] is, in the current version of the
program, entirely based on the semi-analytical approach.

On the other hand, all the above critical considerations regarding uncertainty
about the proper choice of perturbation amount in the finite-difference approxi-
mations refer to the semi-analytical methods as well. Moreover, accuracy of the
semi-analytical results, especially in the case of shape sensitivity, is reported to
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be additionally affected by details of numerical methods used in the discrete
primary problem formulation, like number of elements [98, 101], or by specific
features of structure deformation, like large rigid body motion [55]. There are
several publications dealing with improvements of the latter drawback by in-
troducing various correction factors and modifications to the finite-difference
schemes,cf. e.g. [97, 98], or by computing certain selected terms in detailed ex-
pressions for the explicit derivatives OnF (like e.g. those related to rigid body
motion) in an exact analytical way while all the other terms by finite-differences,
cf. e.g. [55, 100]. All such improvements, however, result in increase in the neces-
sary numerical implementation cost, which puts into question the fundamental
advantage of the semi-analytical method.

2.2.4. Differentiability of response and uniqueness of the sensitivity solu-
tion

In the discussion of previous sections in this chapter the assumption has been
made that all design gradients, implicit or explicit, exist, i.e. that all the func-
tions and fields are differentiable with respect to design h. It is known from
practice that this frequently may not be the case, and the main reason is the non-
differentiability of F with respect to the response q. An example can be analysis
with contact boundary conditions or elasto-plastic analysis with instantaneous
change of stiffness at the yield limit. This may imply non-differentiability of q
with respect to design h, too. Considering a primary solution at the very tran-
sition point between e.g. elastic and plastic range and assuming a small per-
turbation Ah;, we may find the solution for perturbed design falling into the
purely elastic range while the opposite perturbation —Ah; may drive the so-
lution into the plastic range, i.e. beyond the yield point. In such a case, the
two corresponding response perturbations would be generally different, not just
in sign (as it would be in the case of smooth dependence) but in amount and
direction, too.

Consider for example a uniaxially stretched bar, cf. Fig. 2.6, loaded with
a stretching force P(t) = At with A given. The length and cross-sectional area of
the bar are denoted by [ and A, respectively. At a certain time instant ¢ = ¢, the

P
——

— u

Figure 2.6. Uniaxially stretched elasto-plastic bar
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yield limit is encountered and plastic flow continues for ¢ > t,. Obviously, the
bar stiffness changes abruptly at ¢, and so may the response design derivatives.
Even a rough analysis of the problem with a simplified ‘double-modulus’ elastic
constitutive equation

Ee fore < 3%,
7\ Bre+ Oy < - %) otherwise, (2.48)
so that the displacement
& for t < ty, ie. P(t) <oyA,
u(t) = P(t)l (1 herwi (2.49)
ErA 9 \E;,TE otherwise,

shows that the displacement sensitivities du/dh; with respect to e.g. the bar
cross-sectional area hy = A or initial yield limit hy = oy , considered as functions
of time, exhibit a discontinuous jump at the yield limit point Z, see Fig. 2.7.
In other words, the design derivatives, understood as

dh;  Ahsso Ah;

have at ¢, two different limit values depending on the sign of Ah;. Thus, in
order to compute in such a case the design variation of u with respect to a given
infinitesimal variation dh;, one should compute the expression (du/dh;) dh; by
choosing one of the two limits of du/dh; in accordance with the sign of dh;
considered. The left-hand side limit (that is actually output as a result at ¢
if the yield condition is strictly enforced — note the weak inequality in condi-
tion (2.49)1) describes properly the sensitivity with respect to only such varia-
tions éh; for which the perturbed structure, loaded with the same force P(t=ty),
is still elastic at ¢y (in both of the considered cases of hy = A and hy = oy,
this takes place for dh; > 0). However, if only ¢ infinitesimally exceeds t, one
obtains the sensitivity result that is valid for the remaining design variations.
This can be written as

0

5—:1 O+ 88—;:2 ~ Ohy  for such 6h; that o(hi+0hi) < oy,
5u(t:ty) _ ty ty

% 5hy + 8_u dhy otherwise,

Oha |4 Oha |4 (2.50)

with (Ou/0h;)| i and (Ou/0h;)| i denoting left- and right-hand limits of Ou/0h;

at the discontinuity point.
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Figure 2.7. Elasto-plastic bar. Displacement sensitivities

Figure 2.8. Elasto-plastic bar. Space of design variations at t = t,

Investigating Eq. (2.49) we can realize that the space of possible (infinitesi-
mal) variations dh; at t = ty can be divided into two half-spaces corresponding
to the cases of Eq. (2.50); (elastic perturbed states) and (2.50)2 (elasto-plastic
perturbed states), see Fig. 2.8. This observation allows to employ the notion
of Gateaux differential (directional derivative) to describe design sensitivity at
the discontinuous transition point. Generalizing the conclusion onto 2D and
3D problems with an arbitrary number of design parameters, we can state that
the considerations regarding sensitivity computations in the preceding sections
of this chapter remain valid also for such a case of non-differentiable response,
upon the assumption that the design sensitivity dp(-) is understood as a direc-
tional derivative in the Gateaux sense. Detailed formulae have to be, however,
reformulated in view of the fact that the frequently utilized chain rule of differen-
tiation does not generally apply to Gateaux differentials [41]. Another question
that has to be risen is about the conditions upon which particular variations
are associated with particular limit values of sensitivity.
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These questions will not be discussed in this thesis, though, since their prac-
tical importance appears to be minor. There are two reasons for this.

First, in computational practice, it is very unlikely that we ever have to
determine sensitivity at the transition point. To the contrary, in real cases
of space- and time-discretized systems, probability of hitting the very limit
point at the end of a typical time step (i.e. the precise fulfilment of the yield
point condition & = oy) is extremely low. Thus, numerical formulations based
on a notion of regular design derivative are generally sufficient for sensitivity
analysis, even in problems with locally non-differentiable response. Besides,
even in an unlikely case of meeting such a point in computations, the ‘regular’
formulation is able to yield a solution which corresponds to one of the two limit
values of the directional design derivative. Negligence of the other limit value is
not a really fatal error, though. All we risk in such an instance, is that we are not
able to correctly predict the response perturbation for a certain class of design
perturbations, because we use the incorrect value of the sensitivity gradient.
Note, however, that all ‘good’ sensitivity solutions obtained for neighbour points
enjoying differentiable response may also be criticized for bearing the same kind
of error, too. This is because the solution d, G, allowing to predict the response
variation G due to an infinitesimal design variation dh, is usually employed
in practice to predict finite response perturbations AG corresponding to finite
perturbations Ah. If we occasionally choose such Ah that ‘drives’ the perturbed
structure onto the other side of the transition point, such prediction will lead
to erroneous prediction of the response perturbation. This may be considered
a drawback of the method but, since it is its inherent feature, it cannot be
overcome and the user have to be simply aware of such possible problems. Thus,
the above mentioned problem of possible wrong choice of the design sensitivity
limit value a the very transition point appears to be just another exemplification
of this general weakness of the method.

Second, occurrences of gradient discontinuities are much less frequent and
their magnitudes much lower than it might be suggested by the example con-
sidered in this section. Indeed, this is an extreme case, hardly ever met in
reality, when the entire structure switches from elastic into plastic régime at
one time instance. In the continuum mechanics such transition typically occurs
gradually, so that at each time instant only isolated lines or surfaces are in the
state of transition from elastic to plastic range. It is easy to verify, on a simple
example, that the reported discontinuities in sensitivity do not occur in such
a case. Let us consider a similar example of an uniaxially stretched bar whose
cross-section area changes linearly along its length, Fig. 2.9. Applying the same
proportional load, P(t) = At, we can predict that the solution will be elastic
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Figure 2.9. Uniaxially stretched elasto-plastic bar with variable cross-section

until ¢ = ¢y corresponding to P = oy A; and then, until ¢ = ty9 corresponding
to P = 0y Ay, the transition point will gradually move from right to left, taking

for different values of P the location 7 = % . It is easy to verify that
( P(t)!l A
A= A7) In vy for t <tyq
Pl (1, PO 13, PO Pl)—oyAi (1 1
U(t) — Ap—Aq ET O'yA1 E O'on Ap—Aq ET E

for tyl <t< tyg

P(t)l A 1 1 )
Er(Ao—A41) In A_? — oyl <E_T - F) otherwise.

The above solution appears to be continuous and differentiable with respect to
all input parameters.

This conclusion lends itself to easy generalizations towards 2D and 3D con-
tinuum elasto-plastic formulations. It must be noted, however, that in discrete
parameter formulations, the transition from elastic into plastic range does not
occur continuously. Actually, there are numerous but small non-differentiable
“umps’ associated with elasto-plastic transitions occurring at certain discrete
material points. We might imagine them by replacing the bar in Fig. 2.9 with
a bar consisting of a series of constant-cross-section short bars ordered monoton-
ically from the thickest A = Ag to the thinnest A = A; and connected to each
other. Nevertheless, in realistic engineering computations, the discontinuities in
sensitivity solution appear to be really small and possible errors limited, which
will be shown in computational examples in Section 4.3. Such numerous but
small discontinuities are also likely to appear in analyses of discrete-member
structures, like trusses 77|, not discussed in this study.

These conclusions allow to formulate the statement that possible discontinu-
ities in sensitivity solutions do not usually require special treatment in practical
numerical formulations. In other words, despite the lack of full mathematical
justification, the formulation of design sensitivity analysis in terms of ‘regular’
definition of derivative is satisfactory for most non-trivial problems of elasto-
plasticity, including those in which local non-differentiability of response is en-
countered.






Chapter 3

Elasto-plastic static equilibrium problem
formulation

Formulation of DSA requires deep and detailed understanding of the primary
problem formulation. The following chapter presents in a general form the
primary problem of static deformation of an elasto-plastic body. Presented
are constitutive equations of elasto-plasticity and elasto-viscoplasticity in both
small and large deformations, and general finite element equations of the global
path-dependent equilibrium problem. The contents of the chapter is merely
a recapitulation of known theoretical and numerical formulations for problems
of nonlinear mechanics with special attention paid to elasto-plasticity. FEven
though it virtually does not contain original contributions of the author, it seems
indispensable to place the material in the thesis, as the following formulations
of sensitivity in Chapter 4 extensively recall the notation and details of the
formulation of the primary problem.

3.1. Continuum variational formulation of nonlinear statics

3.1.1. Geometry and boundary conditions

Let us consider a deformable body occupying in the initial undeformed configu-
ration C” the volume Q limited by the closed boundary surface 9Q° (Fig. 3.1).
Starting from the initial time instant ¢ = 0, the body remains in a quasi-static’
motion, assuming at each time instant ¢ the configuration C! and occupying
then the volume Qf. Let us define the reference configuration C" in which the
body occupies the volume 2" and each material point of the body coincides
with a point in the three-dimensional space defined by the Cartesian coordi-
nates X = [X;], 7 =1,2,3. These coordinates define thus uniquely the material

'i.e. slow enough to neglect any inertial forces dependent on acceleration

39
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A

T3
T2
I cr
Figure 3.1. Configurations of a deformable body in motion
point. The reference configuration can be chosen arbitrarily — in the most

natural case it is equivalent to the initial configuration C°, but it may also be
defined as coincident with another, deformed configuration of the body or, pos-
sibly, as an abstract configuration, not associated with any stage of the body’s
deformation.

Instantaneous position of a material point 2! at any time instant ¢ is defined
by a unique transformation of the reference coordinates,

x' = x(X,1) (3.1)
Let us define, at any time instant ¢, the displacement field

u=uXt)=2' - X =x(X,t) - X (3.2)
and the deformation gradient with its determinant

F'=F(X,t)=Vz' =1+ Vu', J' = det F* (3.3)

where V(-) =d(-)/dX = [() ;] denotes the gradient operator in C" and I = [0;;]
is the 2nd rank identity tensor. The above definitions may be generalized to time
increments — the relative displacement and deformation gradient at a material
point between the time instants ¢ = t; and t = to read

byl2 = gl — gl =42 —ult, (3.4)
tlth _ dmt2 _ th (Ftl)—l t1Jt2 _ Jtz/Jtl (3 5)
T dah ’ - ‘ |

Unless stated otherwise, the reference configuration C” in the following consid-
erations will be identified with the initial configuration C°, which implies in
particular that ‘u! = u! and °F* = F! for each time instant .
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External loads are applied as known transient distributions of volume forces
f(X,t) acting within Q and surface stresses (X, t) acting on the part of the
external surface 02, . Both f and t are related to unit volume and surface in
the reference configuration C", respectively. The remaining part of the external
surface, 0, (02 = 00, U 0S,), is where prescribed displacements @(X,t) are
enforced. The division of 92 into 0€2, and 0f2, remains unchanged throughout
the history of motion, i.e. QL and 9!, become transient projections of points
belonging to 02, and OS2, , respectively, according to transformation (3.1).

Other mixed types of boundary conditions (e.g. surface contact conditions)
will not be discussed, in order to preserve clarity of the presentation.

3.1.2. Virtual work equation

Without recalling the local partial differential equations governing the quasi-
static equilibrium of a nonlinear continuum, let us write down the corresponding
variational formulation. At each time instant ¢, the virtual work equation,

/&:6édQ: f(SudQ+/ £ 6w d(8Q), (3.6)
v Qr oar

is required to hold for each kinematically admissible displacement field variation
du, where € is a strain variation tensor associated with du, and & is a stress
tensor work-conjugate to J&. Even if ¢ is only defined at 997, the last integral in
Eq. (3.6), taken over the entire boundary 0Q2" = 9Q U 0%, is formally correct
since, by the definition of kinematical admissibility, du = 0 at 9€,, .

There is a variety of work-conjugate pairs (&,d€) that may be used in
Eq. (3.6). For small deformations (F' ~ I) these are the true Cauchy stress o
and the Cauchy strain variation Jg,

G=0, 0é=0be=2%[Viu+(Véu)'| (3.7a)
which corresponds to the definition of the linearized Cauchy strain,
e =3[Vu+ (Vu)'] (3.7b)

For large deformations, the following work-conjugate pairs will be considered in
the subsequent derivations:

e The 2nd Piola—Kirchhoff stress tensor T,

6=T=JF loF ", (3.8a)
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and the Green strain variation 0 F,
66 =0E = L(0F"F + F'4F), (3.8b)
which corresponds to the following definition of the Green strain tensor itself,

3(F'F —1I). (3.8¢)

e The Kirchhoff stress tensor T,
6=17=Jo=FTF", (3.9a)
and the variation de,
b€ =be=L[6FF '+ (SFF )], (3.9b)

which, however, does not correspond to any closed-form definition of a strain
tensor €.

In all the three cases given above, both the stress & and the strain variation
0€ are symmetric, and the latter can be generally expressed as

de" = Viu for o = o,
06 = 5 (6" + (06")"), 66" =( 6E" = FT'6F foré =T, (3.10)
Se"=6FF~! ford=r.

Thus, the integrand in the Lh.s. of Eq. (3.6) can be equivalently written as
0 :0€ =0 :0e" (3.11)

which will be taken advantage of in later sections.

3.2. Constitutive relations

3.2.1. General formulations

The virtual work formulation presented in Section 3.1.2 can be employed to find
the unknown transient fields (X, 7) and (X, 7) provided that constitutive
relations between stress &, deformation F', and possibly a set of other (scalar
or tensor) constitutive state variables z = {21, 22,...} and/or their rates z =
{21, 22,...} are given. A general form of such relations is

9j(F,F,5,5,2,2) =0 (3.12)
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in which certain requirements of objectivity and symmetry must be additionally
fulfilled.
In the case of elasticity, there are no additional constitutive state variables z;
(z = 0) and the relationship between stress and strain tensors is expressed
with the use of a scalar function of the deformation called the elastic strain
potential W,
dWw

-2 3.13
dE ’ (3.13)

which for small deformations can be expressed as

_aw

= — 3.14
o="7" (3.14)

where W is a linearized (at F' =~ I) approximation of W. The virtual work
equation (3.6) with such a constitutive model can be independently solved at
each time instant .

In the case of elasto-plasticity, Eq. (3.12) may assume the following, general
rate-type form

6=0(F F,z), 2= 2i(F,F,z2). (3.15)

In this formulation, the constitutive equations (3.15) must be integrated in time,
starting from ¢ = 0 before substitution to Eq. (3.6), which finally yields the
solution (u,&,2z) as history-dependent transient fields. This obviously means
that additional initial conditions must be defined for all the state fields and their
rates at t = 0.

Relationship between rates of stress and strain is assumed linear, i.e.,
Eq. (3.15)1 can be expressed for large deformations as

T=¢®:E+H (3.16)

where €'8 = €'8(F, z) is the 4-th rank constitutive tangent stiffness tensor and
H = H(F,z). Defining tensors of deformation velocity I and deformation rate
d as

l=FF!, d=1(1+1"), (3.17)

(note analogy between the rate d and the variation de in Eq. (3.9b)), we can
express Eq. (3.16) in spatial tensor measures as

Lom=c¢%:d+n (3.18)
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where n = FHF'", the Lie derivative L,T is defined as
Lo =FTFY =+ —Ir — 717, (3.19)
and the 4th rank stiffness tensor ¢'® can be expressed as

g _ o tg
Cikl = FZpF]quTESCWS .

(3.20)
Clearly, for small deformations (F ~ I), both Egs. (3.16) and (3.18) reduce to
o=C%:é4+H (3.21)

where C' is a limit of both €' and ¢'® at F' — I while # is a corresponding
limit of both H and 7.

Differentiating in time Eqs. (3.13)—(3.14), we realize that the elasto-plastic
rate-type constitutive equations (3.16)—(3.21) include pure elasticity as a special
case, with H =n ="H =0 and

2w 2w
tg — © = — tg ey € = . 22
< ¢ 15 c c P (3.22)
With these settings, Eqs. (3.16), (3.18), and (3.21), become
T=¢":E, Lo =¢°:d, o=C":¢, (3.23)
with C%kl = FiijquTESQ:;qrs .

3.2.2. Elasticity

Constitutive equations of the type (3.13) or (3.14) are called hyperelastic. Defi-
nition of the hyperelastic constitutive equation consists in providing a particular
form of the elastic strain potential W. Two forms of W are considered in the
thesis: (i) the linear elastic strain potential and (ii) the modified neo-Hookean
strain potential.

The linear elastic strain potential has in the finite deformation range the form

W = %E cCC E, re. W= %Eij Q?jkl Ey (3‘24)

where €° is a constant tensor, here identical with the constitutive stiffness ten-
sor €' defined in Eq. (3.22). Indeed,

In the case of isotropy,

€ =KIoI+2G(3-3I®I), (3.26a)
S = (K —2G) 650k + G001 + 0udji) , (3.26b)
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where J is the fourth rank identity tensor and K, G are the isotropic bulk and
shear moduli, respectively, related to the engineering elastic constants F, v as

E E

= K= —. 2
¢ 2(14v)’ 3(1-2v) (327)
Thus
T = K(trE) I 4+ 2G devE, T = K(trE) I 4+ 2G devE (3.28)

where the deviator devE = (3 — %I ® I) B
For small deformations, Eqgs. (3.24)-(3.25) hold for the tensors T' and E
replaced by o and e, respectively, e.g.,

W=1e:C:¢, oc=C:¢, c=C":¢ (3.29)

(where the ‘linearized’ tensor C® in this case exactly equals €°), and, particu-
larly, for isotropy (3.26)

o = K(tre) I + 2G deve, o = K(tré) I + 2G deve. (3.30)

Another isotropic form of the elastic strain potential, suitable for the finite-
deformation elasto-plastic formulations, is the modified neo-Hookean potential,
cf. [110]. Let us recall definitions of the right and left Cauchy-Green deformation
tensors,

C=FTF, b=FF7T, (3.31)
so that, cf. Egs. (3.8¢) and (3.13),

dWw
E=1C-1I T=2—,. 32
Let us also split the deformation gradient F' into the volumetric and isochoric
part,

F=FF, (3.33)
where
FY = J5I, detF" =, F=J3F, detF=1, (3.34)

so that isochoric deformation tensors can be defined as

C=F'F=J3iC, b=FF"=J3b. (3.35)
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The elastic strain potential is assumed in the form
W=1K[L(J*~1) —InJ] + iG (trb - 3) (3.36)

in which the volumetric and isocho2ric modes of deformation have been explicitly
separated. Since trb = trC = J 3 trC and dJ = Jtr(dFF~') =1 JC~' : C,
we can differentiate W with respect to C, cf. Eq. (3.32)2, and obtain

T=31K(J*-1)C ' +GF 'devbF ", (3.37)

which can be written in a more compact form in terms of the Kirchhoff stress
tensor as

T =3K(J*-1)I + Gdevb. (3.38)

The rate-type form of the constitutive equation (3.38) can be written in a con-
venient way in terms of the Lie derivative of 7, cf. Eq. (3.23)

Lo =¢":d (3-39)
where
¢ = K[JPI®I—(J*-1)7]
+ 2G [(trb) (3 — LI ® I) — (dev(b) ® I + I ® dev(D))] . (3.40)
Assumption of small deformations (F' ~ I, J ~ 1) makes the neo-Hookean
model converge to linear isotropic elasticity, cf. Eq. (3.30).
3.2.3. Elasto-plasticity at small deformations

The displacement field w in this formulation is assumed to be a sum of the
elastic and inelastic parts

u =u’+ ul. (3.41)

Defining, in analogy to Eq. (3.7b) &° = %[Vue + (Vu®)T] and e = L[VuP +
(VuP)T], we can express the material linearized strain rate € as

€ =¢° 4 &P (3.42)

where the first, elastic component remains in the linear relation to the stress
rate, cf. Eq. (3.23)3,

& =C°: e (3.43)



3.2. Constitutive relations 47

while the second is either zero (elastic deformation) or obeys the rate-type flow
rule (elasto-plastic deformation). Purely elastic deformation occurs whenever

flo,a,e?) <0 (3.44)
where f denotes the yield function in the form
flo,a,é?) =ad(o,a) — k(eP) (3.45)

while the Ziegler-Prager’s back stress o and equivalent plastic strain éP are
internal plastic state parameters. The isotropic hardening function x(eP) is
a known material function taking the value of oy (initial yield limit) at e® =0,
and

&:\/gus”:\/%s:s, s =dev (o — ), (3.46)

is the Huber—Mises equivalent stress, being an invariant of the deviatoric ‘rela-
tive’ stress s.

If f > 0 then plastic flow occurs. The associative flow rule, conforming with
most metal plasticity observations, defines the plastic strain rate as proportional
to the normal direction to the current yield surface f in the stress space,

_d 3. 3
eI By n::ii::vgf. (3.47)

do V2 Ell a

The above rule implies that the plastic strain eP is deviatoric (isochoric) which
again agrees with observations.

Evolution of the back stress ., defining the translation of the yield surface
in the stress space, is described by another associative rule [138],

& = (o — a) (3.48)

which, in view of Eq. (3.47), may also be written as
2
dové = S H'e” (3.49)

where H' = dH/deP and the kinematic hardening function H(eP) is another
known material function. Note that only the deviatoric part of the back stress «
is in fact the state variable — its spherical part does not enter the formulation
and is beyond our interest.

What still remains to be defined in the constitutive model, is the evolution
rule of the equivalent plastic strain eP, being the measure of the advance in
plastic deformation. There is a variety of such rules proposed in the literature.
A number of them will be presented below.
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Rate-independent model

In this model of plastic flow, the yield function f is assumed to never exceed
zero, and the evolution of éP results directly from the consistency condition

f=o. (3.50)

Taking the time derivative of Egs. (3.45)-(3.46) and employing (3.47), (3.49),
we obtain

3 . 3 .
:%82(d‘—d)—l{/ép:%8:0"—(/1/4-[‘[/)5[), (3.51)

f

which, when set to 0, yields

. 3s:0 3n:o
P — /22 3.52
© T %G (Wt H) \/; K+ H (3:52)

Substituting it into Eq. (3.47) and employing Egs. (3.42)—(3.43) we get

. 2 :CC €
oo Gt e, (3:53)

which finally allows to write the rate-type constitutive equation as, cf. Eq. (3.21),
6=C:(6—€P)=C":¢, (3.54)
where the elasto-plastic constitutive tangent tensor C'8 is expressed as

(C°:n)®(n:C°

cts =c° — 3.55
h+n:C:n ( a)
or
CC. MMy CE
Cly = Cojp — — 2 0 P pakd (3.55b)

h + nrscistuntu

In the case of isotropic elasticity, i.e., if C® is expressed with Eq. (3.26), this can
be reduced to

3G

Ccls = C° —2G —
LA Ny s (R YE

(3.56)
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Rate-dependent (elasto-viscoplastic) models

Here, the states corresponding to f > 0 are allowed and the evolution equation
for eP is provided as an additional condition in the general form

e? = g(a,eP). (3.57)

In this case the rate-type constitutive equation can be expressed as, cf.
Eq. (3.21),

o=C%:é+%H, Ct=cC, H=-4/39(G.e)C:n. (3.58)

There is a variety of particular forms of the function g(&,éP) used in engi-
neering practice. In this study, the following two will be discussed as examples:

e The overstress (Perzyna) model [102],

4(7,8) = - <7f$é§;)

> , for f >0, otherwise ¢g=0, (3.59)
W

where f(&,eP) is the yield function given by Eq. (3.45),
1(5,e) = 5 — (&), (3.60)

and p, m are material constants.
e The power-law strain and strain-rate hardening model [103],

1

(7,8 = & [@] T @) = Be <1 + g)l : (3.61)

where F is the Young modulus and £g, €9, m, n are material constants. The
original formulation of this viscoplastic model did not include kinematic
hardening (s = deve), however, there are no formal restrictions against the
generalization (3.46)2 . Note that there is no yield limit in this case and the
plastic flow may occur at any stress state, i.e. K = 0 should be assumed in
the definition of the yield function f, so the condition (3.44) never applies.
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Other forms of the viscoplastic evolution function (3.57) were also given by
Hart [39], Anand [2|, Chaboche [19], and others. Some of them require in fact
some generalization of the model described above, introducing e.g. additional
state variables [2| or combining the evolution equation of the back-stress a with
that of &P [19].

If the yield condition is not fulfilled (i.e. if f < 0, in material models to which
it concerns), then the evolution equation reduces in both rate-independent and
rate-dependent models to é? = 0 and Eqs. (3.54)—(3.58) are replaced with the
elastic constitutive model (3.23)3, 6 = C° : €.

The constitutive model presented above is a particular form of the general
constitutive formulation (3.15) expressed in terms of Cauchy stress and strain
measures, with the set of internal state parameters

z = {devo,deva,eP}. (3.62)

In the specific case of H = 0 we can set o« = 0 and remove it from the set of
state parameters z — the material does not exhibit kinematic hardening in such
a case.

3.2.4. Elasto-plasticity at large deformations

The constitutive theory presented in Section 3.2.3 may be easily extended to
large deformation case by simply substituting the linearized strains € by the
Green strain FE, the Cauchy stresses o, a by their 2nd Piola-Kirchhoff coun-
terparts T', A, and retaining all the other equations in the unchanged form.
Although, in view of the definition of the Green strain (3.8c), there may be
problems with consistent definitions of the elastic and plastic strains E€, EP in
the so modified additive equation (3.42),

E=E°+EP, (3.63)

the simple concept is mathematically correct and it has been advocated by
Casey |18] for the cases of small elastic/moderate plastic strains (and vice versa)
as well as of small strains/moderate rotations (and vice versa). It is particu-
larly suitable for purely elastic problems with large deformations and with the
strain energy potential defined in terms of the Green strain, W(E). Its great
advantage is the ability to reuse the small deformation constitutive equations
without changes, after only redefinition of selected terms to include nonlinear
geometry.
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The rate-type constitutive equation takes in such a case the form (3.16), with

(€°:N)® (N : €°)
h+N:¢: N '’

for the rate-independent model, cf. Eq. (3.55), or

Q:tg — Q:e _

H =0, (3.64)

e = ¢ H = _@gw, @) e N, (3.65)

for rate-dependent models, cf. Eq. (3.58), where N = S/||S||, S = dev(T—A).

In the general case of large elasto-plastic deformations, however, this ap-
proach cannot be employed as it does not comply with observations regarding
the physical nature of elasto-plasticity. Actually, reversible elastic deformations
of metal crystals are superimposed on irreversible plastic deformations due to
dislocation motion in the crystals. This can be described by the multiplicative
decomposition of the deformation gradient into the elastic and plastic parts,
first proposed by Lee [75],

P

_dz _de
da’ T dx

F = F°F? F*° (3.66)
which corresponds to the kinematical scheme depicted in Fig. 3.2 (with the
initial configuration considered as the reference configuration). Here, C! is a hy-
pothetical intermediate stress-free configuration that moves along with the de-
formed body.

The split (3.66) is not unique because the stress-free configuration may un-
dergo arbitrary rigid-body rotations. Thus, detailed constitutive formulations

x3

I

Figure 3.2. Configurations of a body in elasto-plastic deformation
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based on the concept differ from each other in the way the rotation is assigned to
elastic or plastic deformation, and in the consequent definitions of back- and/or
forward-rotated measures of certain tensorial quantities used in the equations.
Defining, in analogy to Eq. (3.17), elastic and plastic deformation velocities and
symmetric deformation rates,

I1° = F°(F°)~!, d° = 5[1°+ (197, (3.67a)
IP = FP(FP) 1, dP = [P+ (1), (3.67b)
IP = FeIP(F°)~ !, dP = 1P + (")), (3.67¢)

where IP and dP should be understood as push-forwarded (to the current con-
figuration C') measures of IP and dP (defined in C!), we can write [93]

I=1°+1P, d=d"+d°. (3.68)

This additive split of the deformation rates enables formulations that again
reuse the equations of small-deformation elasto-plasticity presented in the previ-
ous section. However, the equations have to be now formulated and integrated in
spatial description, i.e. in a deformed, moving configuration C?, which introduces
numerous difficulties. Since the work-conjugated stress tensor to the deforma-
tion rate d is the Kirchhoff stress tensor, it is this tensor that is postulated
to replace the linearized Cauchy stress o in the constitutive equations. This
implies necessity of using an objective time derivative in the elastic rate-type
constitutive equation, e.g., c.f. Eq. (3.23)2,

LoT=7—1T—7(1)" =c:d®, = FF,FoFoC,. .. (3.69)

This equation does not conform to the small-deformation equation (3.43) and
thus it has to be integrated in time in a different manner. A common way to
treat this issue is to formulate this equation in a hypoelastic form

F=a:d° (3.70)
where the Zaremba—-Jaumann derivative of 7 is defined as

¥=4— wr +1u°, we:%(le_leT):le_de’ (3.71)
and the hypoelastic stiffness tensor a has in the index notation the form

ikt = ok + Ok Ty + ik - (3.72)

Efficient integration of this formulation typically requires that the stress-
dependent terms in a are neglected, i.e. @ ~ ¢°. This is usually not a crit-
ical problem as stresses are frequently incomparably smaller than stiffness
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coefficients. However, this makes the formulation inconsistent with the purely
elastic formulation, i.e. the time-integrated response of elasto-plastic formulation
in which no plastic flow happened to occur will be different than the response
of purely elastic, time-independent analysis.

Other difficulties arise when the deformation rates d, d¢, dP are to be in-
tegrated in time. Generally, there is no closed-form strain tensor whose
time derivative would equal d. Assuming invariance of principal strain direc-
tions, this condition appears to be fulfilled by the Hencky logarithmic strain
€ = InU = In(v/C). Even in this simplified case, however, the use of a nu-
merically expensive tensor spectral decomposition routine is necessary in the
computational applications which must be considered as drawback, especially
in view of the fact that, as it will be shown in the following section, its unique
differentiation will also be necessary in order to obtain the tangent operator.

The difficulties may be overcome by considering another approach to combin-
ing large-deformation elasto-plastic kinematics with the associative constitutive
model. An example is a formulation of Simo [110], presented below for the
case of the Huber—Mises flow condition, in which the multiplicative split of the
deformation gradient (3.66) does not imply additive approximation (3.68) of
the geometrically linear kinematic equation (3.42). Instead, large-deformation
reformulation of the von Mises’ postulate of minimum plastic dissipation leads
to the following equations.

Let us define the elastic and plastic Cauchy—Green deformation tensors, cf.
Egs. (3.31),

b° = F°F°T CP=FPTFP, (3.73)
The plastic flow is considered isochoric, i.e.

JP =1, J=Je. (3.74)
Thus, cf. Egs. (3.34)-(3.35), let us define

Fe=J5F°, detF°=1, b° = FeFeT = J5b°. (3.75)
Let the material obey the neo-Hookean hyperelastic equation, cf. (3.38),

T=3K(J?~1)I + G devb®. (3.76)
so that, cf. Egs. (3.19)—(3.40), (3.69),

LyeT = ¢°:d°, (3.77)

¢ =K[JIol- (J*-1)7]

+ 2G [(trb°) (T — 2T @ I) — (dev(d®) @ I + I @ dev(b®))]. (3.78)

with the strain energy referred to the intermediate stress-free configuration Ct.



54 Chapter 3. Elasto-plastic static equilibrium problem formulation

The associative plastic flow rule is expressed in C! as

= 3. s 3s
d° = /Sy FeinFe T :—:\ﬁ— 3.79
ﬁe GE Il " s T Ve (3.79)

cf. the small-deformation equation (3.47) for comparison, where n is a nor-
mal direction to the flow surface in the current configuration C! (the operation
FelnFeT simply transforms it into ét), the deviatoric relative stress s and
the scalar equivalent stress & are defined as (cf. Eq. (3.46))

s =dev(T — ), d:J_ga, c=1/3s:s (3.80)
and the coefficient
=3 (trd° - Ltra) (3.81)

converges to unity for small deformations. Note that the back-stress a is
a Kirchhoff-type tensor defined in the current configuration.

It will be more convenient to transform the flow equation into either the initial
(CY) or the current (C?) configuration. To do so, let us first write down certain
relations between an arbitrary pair of spatial and material tensors (¢», ¥), their
traces and deviators and time derivatives:

Y=FWFT, U =FlypFT,
trp = (FIF): #=C: ¥, (3.82)
devep = FDev® FT, Dev¥ =¥ - L Y(C: ), '

Loy =F [ (FlyF ") F' =F@F".

According to these rules, the Kirchhoff (spatial) stress tensors T, «, @& corre-
spond to their 2nd Piola-Kirchhoff (material) counterparts T, A, A, respec-
tively. Besides, transforming Eqgs. (3.66) and (3.73), we can see that the spatial
tensor b° corresponds in the same way to the material tensor CP~!, e.g.

dcr!

b* = FCP'FT, Lob* =F — FT. (3.83)

Realizing now that
-1 -1
A gt o Y opeigope T
dt dt ’
we can rewrite Eq. (3.79)—(3.80) in the spatial description as [113]
3ieP
Lobe = 3% s=dev(r — @), (3.84)

g
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and in the material description,

dCP~!  3yep

=Dev(T—A)=F 'sF~T )
% 5 S, S ev( ) s , (3.85)

where v, cf. Eq. (3.81), can be equivalently expressed in terms of C%-defined
(material) tensors as ¢ = %C (Pt — éA)

Since s is deviatoric, so must be £,b°. Equations (3.84)-(3.85) can thus be
rewritten as

5p
dev(Lob®) = — 2% tr(Lob%) = 0, (3.86)
ag
dcr-1 3pEP dcr-1
Dev< — >_ s, C:——=0. (3.87)

The evolution of the back stress a, similarly as in the small-deformation
formulation, is associated with the direction of the plastic flow,

PeP c
dev(Ly,a) = H' 8= —1H' dev(L,b°), tr(Lya) =0, (3.88)
. &P p—1 .
Dev(A) = H' 1/’76 S=-in' Dev<dc(;t ) : C:A=0, (3.89)

where H = H(eP) is a material function.

The above system of large-deformation rate-type constitutive equations
(3.73)—(3.76) and (3.86)—(3.89) has to be completed with the evolution equa-
tion for the equivalent plastic strain eP. The latter is assumed in exactly the
same form as in the small-deformation formulation, i.e. Eq. (3.50) for the rate-
independent model and Eq. (3.57) for the viscoplastic models. In the first case,
the formulation may be again transformed to a rate-type stress strain relation,
cf. Eq. (3.18) with n = 0,

LoT=c%8:d (3.90)

where the elasto-plastic tangent stiffness tensor ¢*® has been derived in [110].
In the latter case, we can transform it to the form (3.18) as

Lo =c®:d+n, '8 = ¢ (3.91)

Obviously, if the yield condition is not fulfilled (i.e. if f < 0, in material models
to which it concerns), then the evolution equation reduces in all elasto-plastic
models to é® = 0 and the constitutive model of neo-Hookean elasticity (3.39) is
obtained, L, = ¢° : d.
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The constitutive model presented above is a particular form of the general
constitutive formulation (3.15), expressed in spatial stress and strain rate mea-
sures, with the set of internal state parameters

z = {b° a, e} or z={b°, &,e}. (3.92)

It is clear that, writing the equations in material description, in the configura-
tion C", we may equivalently consider CP and A as internal state parameters,
instead of b° and a. If H = 0 (no kinematic hardening) we can set a = 0 and
remove it from z.

3.3. Time integration of constitutive equations of elasto-plasticity

The subject of this section are the ways of solution of the following problem at
an arbitrary time instant ¢ = ¢,

Given:

— history of deformation F'(t) within 0 <t <t,,

— rate-type constitutive equations,
compute:
— stress & and constitutive state parameters z; at t = t.,

for constitutive equations given in the general form (3.15), and for their par-
ticular examples discussed in Sections 3.2.2-3.2.4. The generic stress tensor &
may obviously be understood as T', T, or o (they are in fact mutually related
via known F'), in accordance with the geometric description and particular con-
stitutive formulation used.

In the case of elasticity the issue is trivial — Eq. (3.13) or (3.14) allow to
determine instantaneous stress as a function of instantaneous strain (with no
historical data necessary) for both small- and large-deformation formulations
and for any form of the strain energy function W.

In the case of elasto-plastic models, the rate-type constitutive formulations of
Sections 3.2.3 and 3.2.4 need to be numerically time-integrated. Let us discretize
the time axis ¢ > 0 by introducing a monotonic series of time instants tg =
0, t1, ta, .... The above formulated problem appears now to have the form
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Given:

— deformation F' and constitutive state parameters z; at t = t,, ,
— deformation F' at t = 41,

— rate-type constitutive equations, discretized in time in the interval
[tna thrl]v

compute:
— stress o and constitutive state parameters z; at t = 4,41,

(again with & understood as T', T or o, respectively). We can write it down
shortly as

Opi1 = &n+1(Fn+1aFn7Zn) ) Zint+l = 2 n+1(Fn+17Fn7Zn) ) (393)

which is an incremental counterpart of the general rate type constitutive equa-
tions (3.15).

A common approach to time-discretization of elasto-plastic formulations is
frequently referred to as the elastic predictor/plastic corrector scheme. In it,
the stress increment at t,y1 is first computed as if deformation were purely
elastic (trial elastic stress) and, if it appears to violate the condition (3.44), it is
corrected by mapping its trial value back onto the surface in the stress space that
represents the updated consistency condition at ¢,,1. For several simple cases
(e.g. small-deformation isotropic Huber—Mises flow formulation) the mapping
has a form of a multi-dimensional radial-return scheme, cf. e.g. [74, 115, 131],
while otherwise we have to do with a general return-mapping problem, typically
solved in iterations with the use of, e.g., the closest point projection scheme,
cf. 112, 116, 130] and others.

In the remaining part of this section, the time-discretized (incremental)
formulations of the rate-type constitutive models discussed in Sections 3.2.3
and 3.2.4 will be presented for a typical time interval [t,, , ¢,,+1]. For any quan-
tity (-), the notations (), and (-)n+1 are used to denote its values assumed at
t =1t, and t = t, 41, respectively, while

AC) = Ontr = Cn

(in particular, At = t,,11 —t,,). Time derivatives, assumed constant throughout
the interval, are approximated as

a0 A
dt At
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For reasons that will be explained in Section 3.4, an important quantity
characterizing each of the presented algorithms is a 4-th rank tensor describ-
ing relation between infinitesimal change in the input variable F,,;; and the
resulting change in stress 1. The tensor, called algorithmic constitutive tan-
gent stiffness tensor (consistent with the time integration scheme) is defined in
different ways for different schemes, i.e.

e for small deformations

do,r1 =C :deyy or do,+1 =C:d(Ae), (3.94)
e for large deformation, material description

dT, 11 =€ : dE,+ (3.95)
e for large deformation, spatial description

d°1y1 = ¢ déepi (3.96)

where d°7 is a differential counterpart of the Lie derivative L,7, cf.
Eq. (3.19),

T
doTn+1 = Fn+1 dTn+1 Fn+1

_ _ T
= A7y — dFu1 F) Tt — T (dAF FY) (3.97)

The strain differentials de, 1, dE,+1; and de,+; are defined in analogy to the
variations! (3.10), i.e.

den+1 = 4 (del,; + (del,1)T), del | = Vdupi1, (3.98a)
dBEni1 = 5 (B, + (dBy )T, dEy ;= Fpyy dFy, (3.98b)
den 1 = % (deq‘iﬂ + (deiﬂ)T) ’ depy = dFu Fnjrl1 ) (3.98c)

and, in view of symmetry of the algorithmic tangent stiffness tensors, they can
be replaced with de},,, , dE}; | and de;; |, respectively, in Eqs. (3.94) (3.96).
Note that C, € and ¢ are usually not equal to their continuum counterparts
Cts, &' '8 respectively, appearing in the rate-type constitutive equations
in Sections 3.2.3 and 3.2.4. Forms of the algorithmic tangent stiffness tensors
will be given in the following part of this section for different time-integrated
constitutive formulations.

1t is stressed once again that the differentials de and de" do not correspond to any closed
form tensors € and €", but such closed forms are not necessary in the presented formulation.
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3.3.1. Small deformation formulation

Approximate time integration of constitutive equations presented in Sec. 3.2.3
leads to the following incremental formulation. The total strain increment is

Ae = § [V(Au) + (V(Au))'] = Ae® + AeP, (3.99)

while stress is approximated with the following incremental equations, cf.
Eq. (3.43),

Ao = C°:Ae®=C": (Ae — AeP), (3.100)
Opt1 = Op + Ao = Otrial — ct: AsrpL—i-l y (3101)

where o = o, + C® : Ae denotes the elastic trial stress. Convexity of the
flow surface implies that

fn+1 = f(O'n+1, Opt-1, é$1,+1) <0 — ftrial = f(o'trialy A, ég) <0
(3.102)

which enables checking the plastic yield condition after only computing the trial
stress. If fiia1 < 0 then the deformation within the time increment is purely
elastic and the solution is

_ _ _ P _ =
AeP =0, Onil = Oirial » Qi1 = Qyy , Cpiq = € - (3.103)

Otherwise, cf. Eq. (3.47),

3 s 3s
Aep:\/jAepn, n:ﬂ:\/jﬂv 3.104
2 Tomrall V200 (3.104

where the index n+a (0 < a < 1) indicates an intermediate value taken at
t = (1—a)t, + atpyq!. Defining

Strial = dev (O'trial - an) (3105)
and noting that, cf. Eq. (3.49),

dev Ao = 2H,,  AeP = \/gH;HaAép n, (3.106)
we can write

Sp+1 = Sgrial — C%: AeP — dev A

= Strial — \/é AeP (3C°+H,,J):m (3.107)

n fact, only such values of o should be considered for which the generalized intermediate
trial stress O irial n4a = 0n + C° : @€ violates the inequality (3.102)2
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which for isotropic elasticity (3.26) reduces to

Sn+1 = Strial — \/gAép (3G+H, ,)n (3.108)

with Sgya = dev (o, — 2GAe — ).

Consider first the fully implicit scheme with o = 1 in Egs. (3.104)2, (3.106).
Then, s, is parallel to m and thus s, must be so, too, to fulfill Eq. (3.108).
Employing

Sn+1 _ Strial

n —= =
Intall |l Strian

we can consequently transform Eq. (3.108) to a scalar equation expressed in
terms of tensorial norms,

Isnill = llswiall = /2 A2 (3G + H, 1) (3.109)
or
Ont1 = Otrial — AP (3G + HJ 1) (3.110)

This scalar equation with two unknowns &, and AeP must be completed with
a time-integrated form of the consistency condition (3.50) or (3.57). It can be
written in a general form

f(@ny1,60 .1, AP) =0 (3.111)
where, for rate-independent elasto-plasticity

f=fos1 =801 = Kng1, Koy = R(E) (3.112)
while for rate-dependent models

f=Atg(Gni1,e0, ) — AeP. (3.113)

Substitution of Eq. (3.110) into Eq. (3.111) leads to a scalar nonlinear equation
that can be solved with respect to AeP with the use of the Newton iterative
scheme

£(@) ; ;
B 3;) AP+ = AeP() 4 §(AeP) —
R — (3.114)
=17+ 1

— §(AeP) =
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where i is the iteration counter, f() = f (Aép(i)), and the above loop is repeated
until the corrector 6(AeP) gets sufficiently small. The initial predictor is set as,
e.g., Ae?(©) = 0. The coefficient

; of of , of
ep — — n epP — > 11
fa 0011 Intloe + oey * 0Aep (3:115)

with, cf. Eq. (3.110),

_ don 1 _
Oni1ae = X0 = —(3G + Hypy + Hyl AeP), (3.116)

will be useful in further derivations, too. In particular, for rate-independent
case, it can be expressed as

fiaee = Gnitae0 — Kpyy = — (3G + wly iy + Hpy + HJ 1 AP) (3.117)
while for the rate-dependent case as

Fam = At[(9.5)n11 Fnsrner + (20 )np] — 1. (3.118)
where, for overstress viscoplasticity, cf. Eq. (3.59),

dg gm dg gmar/
— = 5 ] s e = = = — T~ 3119
9, T—K gev — 9 (06— RK)k ( )

and for the power-law strain and strain-rate hardening viscoplasticity, cf.
Eq. (3.61),

9
mn(eP +ep)

95 = (3.120)

g€
S
&

—_
mo

For rate-independent elasto-plasticity with linear hardening (k' =const and
H' = const) Eq. (3.112) becomes linear and has the solution

_ Otrial — Kn
AeP = ———— . 3.121
3G + v + H’ ( )
For a < 1, Eq. (3.108) cannot be transformed into a scalar form, since n is
not proportional to s,41. However, expressing n in an explicit way as

Strial
rial nta Strial nta = dev (o, + 2G alAe — o),

B ||stria1 n+a|| ’
we can take the norm of the AéP-dependent r.h.s. of Eq. (3.108) and substitute it
into Eq. (3.111), again obtaining a nonlinear scalar equation on AéP. It appears,
however, that the existence of the solution of this equation is only guaranteed
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Table 3.1. Solution algorithm for small-deformation elasto-plasticity (for the
sake of legibility, subscripts (n+1) have been omitted)

Given
strain e,, and state parameters® z,, = {devo,, devea,, e’} at t,,
straine at t,y; (Ae=e—¢,)

compute
state parameters z = { deveo, deva, é° } and stress o at t,41

using the following scheme:

dev oia1 = devo,, + 2G dev Ae — trial deviatoric stress
Strial = dev O — dev a, — trial relative stress
3. Otrial = %strial : Strial — trial equivalent stress

if Girial — K(e2) > 0 (plastic flow) then®

4. Ae? <+— from Table 3.2 equiv. plastic strain increment
5. M = Styial/|| Strialll — flow direction
6. AeP = \/gAép n — plastic strain increment
7. devo = devoia — 2G AgP
deva =deve,, + %H’Aep update state parameters

eP = eP 4+ AeP

else (purely elastic deformation)

8. devo = devoyal, deva =deva,, er =eb
end if
9. o=devo + K(tre) I — final stress

@ if H = const (no kinematic hardening) then deva = 0 is not a state parameter

and all relevant computations are skipped
b for the power-law strain/strain-rate hardening viscoplasticity this condition is

always fulfilled, except for Firia1 = 0
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Table 3.2. Solution algorithm for the equivalent plastic strain increment AeP,
cf. Eq. (3.114), small deformation formulation

63

AP =0

& = eb + AeP

= Ourial — [3G + H'(eP)] AeP, G.aee = —[3G + H'(eP) + H"(eP) AeP]
f. fae +— from Table 3.3

J(Aer) = —f At f. AeP = AeP + 5(AcP)

if ||0(AeP)|| > tol then go to step 2; else exit

Qi

A

Table 3.3. Computation of f and f Aer for different elasto-plastic and elasto-
viscoplastic models

if (rate-independent plasticity), cf. Eqgs. (3.112), (3.117)
la. f=05—k(eP)
2a. fAéP - (iAép - I{/(ép)

else if (overstress viscoplasticity), cf. Egs. (3.113), (3.118), (3.119)

1h. g=1 ("’;g(f)p)) . f= Atg—Ae?
2b. 95 = #ngép) , ger = =05 U:(éi))

3b. fiAép = At (g,a- 5'7A§p -+ g7ép) —1

else if (power-law hardening viscoplast.), cf. Egs. (3.113), (3.118), (3.120)

1 1
lc. g1 = E¢g (1—}—%)”, g=¢g (é%)m, f=Atg— AeP
2C. 9o =50 Y& = “mirrey

3c. ﬁAép = At (975- 5’7Aép + g7ép) —1

end if
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if @« =1 (the fully implicit backward Euler scheme), thus only this case will be
considered in further discussion.

A compact step-by-step algorithm of incremental constitutive computations
for small-deformation isotropic elasto-plasticity is displayed in Table 3.1. Addi-
tionally, Tables 3.2 and 3.3 display the iterative routine to compute, for differ-
ent elasto-plastic and elasto-viscoplastic models, equivalent plastic strain incre-
ment AeP, needed in Step 4 in Table 3.1.

The algorithmic tangent stiffness tensor defined by Eq. (3.94) can be de-
termined through appropriate differentiation of the equations displayed in Ta-
bles 3.1-3.3. Detailed derivations presented in Appendix A.1 lead finally to the
following form,

C=KI®I+2G(1-9)(I-1I®I)-2G(y-9)nen, (3.122)
where

9 — 3?Aép

Otrial
and
3G . .
SO+ H Aehir for rate-independent plasticity
7= 3GAtg,

for viscoplasticit
A BGHH+HAS) gy —ga] 1 o

(with all quantities taken at ¢,1). For At — 0 and for rate-independent for-
mulation (which also implies AeP — 0 and ¥ — 0), the tensor C converges to
its continuum value C'® given by Eq. (3.56).

It is finally worth noting that the above constitutive formulation is fully

compatible with purely elastic formulation (3.30) for the case of no plastic flow.
Particularly, the tensor C takes then (i.e. for ¥ = 0 and = 0) the form (3.26).

3.3.2. Large deformation formulation

Similarly as in the rate-type formulations, we could easily extend the above
derivations to the case of finite deformations by merely replacing linearized
stresses o, «, s and strains € with their finite-deformation counterparts T, A,
S and E, expressed in the initial reference configuration. The entire algorithm
is exactly the same and schemes presented in Tables 3.1-3.3 can be directly
reused after appropriate redefinition of variables. In particular, algorithmic
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tangent constitutive tensor €, see Eq. (3.95), assumes the form (3.122), with
only n replaced by N = Sgia1/ | Striat||-

Such a procedure can be applied for cases of moderate strains/rotations,
see |18] for discussion on more precise requirements, as well as for the large
deformation elastic problems. In a general case of large elasto-plastic deforma-
tions, however, we will have to discretize in time the formulation based on the
multiplicative split of the deformation gradient (3.66), presented in Section 3.2.4.

Let us assume all quantities at ¢ = ¢,, to be known and the new configuration
Clntt to be given. Knowing deformation gradients F, and Fj, 1 let us define an
‘incremental’ deformation gradient from C'» to C'n+! as

dey 1

fnr1= dx = n+1Fr:1 ) Jn+1 =det fry1. (3'123)
n

Recalling relations (3.82) and applying the fully implicit time integration
scheme (o = 1), let us approximate time derivatives of an arbitrary pair of
spatial and material tensors (¢, ¥) at t,+1 as

: 1
Wn+1 ~ E( Wn-ﬁ-l - Wn) ) (3124)

: 1
(£v¢)n+1 =Fyi1 !pn+1F1;r+1 ~ E(¢n+1 - ¢trial)7 (3-125)

where the trial value of v, defined as
"’btrial = Fn+1 WnFnT+1 - fn+17.bn 7?4_1’ (3126)

is explicitly known. We can thus approximate the final value of ¥, as

Y1 R Puial + At (LoW)nt1 (3.127)

- _2 - _2 _ 1
Deﬁning additionally "l’trial = Jnfl'lbtriala "J’n =Jn Sd’na and fn+1 = ]nf1 fn+17
we may also write

dn+1 ~ 1Z’trial + At (E’v'lﬁ)nJrl 3 /&trial = fn+1’lﬁnfg—|—1- (3128)

Making use of the above relations, we can write the constitutive equations
presented in Section 3.2.4 in the incremental form. Applying Eq. (3.127) to
particular tensors b® and a and denoting (cf. Eq. (3.80))

Gnit = /3 Isusill = /3 sut1 ¢ 801, (3.1292)

Sn+1 = deV(TnJrl - dn+1)7 (3129b)
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we can approximate Eqs. (3.86) and (3.88) as

S
dev(by ;1) = dev(bi) — 3¢n+1AE” anj: ; tr(by4 1) = tr(bia),
n
(3.130)
S
dev(anJrl) = dev(atrial) + H/nJrl 1/}n+1Aép 5-n+1 , tr(an—l-l) = tr(atrial)a
n+
(3.131)

where H',,41 = H'(&} +1)- To simplify further derivations, let us introduce the
following notations,

™ = Gb°, = Gb°, 0 =3GJ 5, (3.132)

so that, cf. Eq. (3.76), dev7* = devr (but 7 # 7!), and, cf. Egs. (3.80)1,
(3.81),

s =dev(T —a), o =tr(T —a). (3.133)

Scaling now Egs. (3.130) and (3.131) by GJ~3 and Jfg, respectively, and re-
calling additionally Eq. (3.76), we come at the following time-discrete system,

_ _ n S _ _
deV(T:{+1) = dev(Tihia) — Pnt1eP ;Jri ) tr(T;—i—l) = t1(Tiyial)s
n-+
(3.134)
_ _ H' S _ _
dev(a,41) = dev(ayial) + % On+1AeP 7"+1 , tr(ags1) = tr(Qugal),
On+1
(3.135)
dev(rusn) = dev(Tiy), tr(rs1) = $K(J2,,-1).
(3.136)

where trial values 75, and @i, can be determined from Eq. (3.128)2, and, in
view of Egs. (3.133)2, (3.134)2 and (3.135),,

On1 =t (Thig — Qni1) = T (a1 — Gtrial) = Prrial » (3.137)

i.e. it is explicitly known.

The system of equations (3.134)-(3.136) together with notations (3.129),
(3.133) includes the unknown end-of-increment values of stress 7,11 and state
parameters 77, (or S, = 7%, ), @ny1 and e | = eh+AeP. To complete it,
the evolution rule for AéP has to be derived from the rate-type equations (3.50)
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(for rate-independent elasto-plasticity) or (3.57) (for viscoplasticity). It is as-
sumed in exactly the same form as in the small-deformation formulation, cf.
Egs. (3.111)—(3.113). However, in the case of pure elastic deformation, AéP = 0
is set instead and Eqgs. (3.134)-(3.136) yield the elastic Kirchhoff stress incre-
ment and unchanged tensorial constitutive state parameters push-forwarded to
the current configuration.

To solve the system of incremental elasto-plastic flow equations we pro-
ceed as follows. Subtracting Eq. (3.135); from Eq. (3.136); and substituting
Egs. (3.134); and (3.137), we come at

H 1 1
Sn+1 |:1 + (1 + 378_ ) @trialAep Un+1:| = Strial (3138)
where Sgia1 = dev(Tyr, — Qtirial). This means that sy, determines the direction
of plastic flow and back stress evolution and that the algorithm is of the ‘radial-
return’ type. Taking a norm of both sides of Eq. (3.138) and defining

_ _ 3 .
Otrial = 4/ 3 Strial * Strial
we get
_ _ H/n+1 _ Sn+1 Strial
On+1 = Otrial — <1 + SotrialAepa - = —_-—. (3139)
3G On+1 Otrial

Rewriting Eq. (3.111),

f(6n+17 ég+17 Aép) — 07

we can see that, upon substitution of Eq. (3.139);, this is a nonlinear scalar
equation for AeP that can be solved with the Newton’s iteration scheme,
of. (3.114)

- §(AEP) = _ﬁ - AP = AgP() 4 5(AP)
FO (3.140)
Aep
1i=1+1

where the coefficient f:Aép is expressed with Eq. (3.115), with, cf. Eq. (3.139)1,

B da,, H'+H"AeP
Gnstam = 2l _ [1 ; EHHAS

dAép SG :| BDtrial - (3141)

The scheme appears to be nearly the same as for small deformations, par-
ticularly, faer can be computed from the equations given in Tables 3.2-3.3,
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with the only difference in ,,+1 and & aer that are given here by Eqs. (3.139);
and (3.141).

Having AeP, we can update stress and the remaining state parameters with
the use of Eqs. (3.134)—(3.136). A compact step-by-step algorithm of incremen-
tal constitutive computations for small-deformation isotropic elasto-plasticity is
displayed in Table 3.4. Additionally, Table 3.5 (nearly identical to Table 3.2) dis-
plays the iterative routine to compute equivalent plastic strain increment AeP,
needed in Step 6 in Table 3.4.

The algorithmic tangent stiffness tensor ¢ defined with Eqs. (3.96)-(3.97),
consistent with the above discussed time integration scheme, can be derived as
follows. In view of Egs. (3.134); and (3.136), the stress 7,41 can be expressed
as

Ty+1 = Thrial = Sp 11 (3.142)
with

Tirial = dev(Tiya) + 5L K(J51—1), (3.143a)

SE—H = ppr1AeP j—i:z \/ggonHAép n. (3.143b)
Thus,

c=c¢"—cP, d°Tivi = ¢© 1 de€pyt, d°sh ., =P :deyqr. (3.144)

The term ¢© is obviously the elastic tensor ¢® (3.78) in which b° is replaced
by b¢

trial -
¢ = [J2 nIel— ) 3]
G [(trbmal (" ) (dev tria) @ L+ 1T ® dev(bmal))]
=K [J2+1I®I (J2+1— ) 3]
+ 3 () (3 — 3T @ T) — (dev(Thia) © T+ T @ dev(Tiya))]
(3.145a)

while ¢P results from the appropriate differentiation of s 41+ For the particu-
lar case of linear hardening rate-independent elasto-plasticity, the form of this
tensor has been derived in [111]. Derivation of a more general form including
nonlinear hardening and viscoplastic effects, presented in Appendix A.2, leads
to the following result,

P =CO0-)+Co(nRI+Ion)+C3nen+ Cin®dev(n?)
(3.145D)
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Table 3.4. Solution algorithm for large-deformation elasto-plasticity (for the
sake of legibility, subscripts (n+1) have been omitted)

Given
deformation gradient F,, and state parameters® z, = { 7%, &, , €& } at t,,
deformation gradient F' at t,1,

compute
state parameters z = { 7%, &, eP } and stress 7 at t,41

using the following scheme:

1. f=FF;' j=detf, f= j_%f — ‘incremental’ deformation gradient
2. 75, =FTfY, @Quia = fa,fT — trial values of tensorial state param.
3. Sgrial = dev (T — Qtirial) — trial relative stress

4.

Otrial = 1/% Strial © Strial — trial equivalent stress

if Guia — #(e2) >0 (plastic flow) then®

5. @ =tr (T, — Qial) — coefficient ¢
6. Ae? <«+— from Table 3.5 — equiv. plastic strain increment
7. sP=pAer Zuin scaled flow direction
_ _ 1 _
8. TF =dev(Ty) — s* + 3Itr T,

a = dev(Quyial) + % sP + %I T Gtgpinl update state parameters
P = &P 4 AeP

else (purely elastic deformation)

9. T"=Th., O=0Quia, € =e) —update state parameters

end if

10. 7 = dev(7*) + 3T K[(det F)? — 1] — final stress

“ B in (3.92) has been replaced by 7% = Gb°; if H = const (no kinematic hardening)

then & = 0 is not a state parameter and all relevant computations are skipped
b for the power-law strain/strain-rate hardening viscoplasticity this condition is

always fulfilled, except for Giria1 = 0
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Table 3.5. Solution algorithm for the equivalent plastic strain increment AeP
cf. Eq. (3.140), large deformation formulation

Aev =0
&P = &P + AeP
o= ouia — |1+ G| pAP,  Gae == [14+ LSS

f, ﬁAéP <— from Table 3.3
S(AeP) = —fAL f, AeP = AeP +5(AeP)
if ||0(AéP)|| > tol then go to step 2; else exit

e N

(see Appendix A.2 for explanation of the coefficients C;). It is important to note
that, due to the last term with the coefficient Cy, this tensor is nonsymmetric.
It is finally worth noting that the above constitutive formulation is fully
compatible with purely elastic formulation (3.38) for the case of no plastic flow.
Particularly, ¢® vanishes and the tensor ¢ takes then the form (3.40).

3.3.3. Reduced-dimension formulations

The constitutive models presented in the previous sections are suitable for so-
lutions of 3-D continuum problems and they are deformation-driven, i.e. they
assume that the full tensor of strain or deformation gradient is given while no
kinematical restrictions are imposed on stress and state parameters. In practi-
cal engineering computations this is not always the case, especially in reduced-
dimension (2-D, 1-D) continuum formulations. While the 3-D equations may be
directly used to plane strain and axisymmetric problems in which kinematical
limitations only concern deformation and thus they may be imposed on the given
quantities, the computations of plane-stress problems, or even one-dimensional
stretching, require modified constitutive algorithms in which some deformation
state components are not explicitly known while some stress components are
given.

Before the computational details are presented, it is necessary to introduce
a notation, frequently referred to as the finite element vector/matriz notation,
in which symmetric 2nd rank tensors are represented in a specified Cartesian
coordinate system as 6x1 vectors,

a=la;] — asx1 = {an, az, ass, V2azs, vV2az, vV2arr }, (3.146a)
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while 4th rank tensors exhibiting symmetries typical for constitutive stiffness
tensors, i.e. Ujjp = Wjipr = Aijure = Api; — as symmetric 6x6 matrices,

[Ar111 Ar122 1133 V2Ar123 V2A1131 V21112
Aoa2o Anazz V2 Aoz V2 U031 V2 Anoro
A= [ W] — Agus = Asszzz V2 Azz23 V2 Aszz1 V2 Assio
2%%o303  2%”Uozz1 2%™Unzio
Sym. 23131 2%Az112
L 21212 |
(3.146b)

In this notation, all scalar tensor products like a : bor a : 2 : b (in the absolute
notation) give the same results as the corresponding vector/matrix products
a'b, aTAb, respectively, while e.g. the tensor ¢ = 2 : b (in the absolute

notation) is represented by the vector ¢ = Ab (in the vector/matrix notation).
In particular, we have

I —  1lga={1,1,1,0,0,0},
3 —  Tgxg =diag[1,1,1,1,1,1],
-3 -3 000
3§ -3 000
P=3-101 — Pes=| 35 5 5 000
0 0 0 1 0 O
0 0 0 0 1 0
0 0 0 0 0 1

so that deva = P : a in the absolute notation corresponds to deva = Pa in
the vector/matrix notation.

In reduced-dimension formulations, certain components can be simply re-
moved from the arrays, thus reducing their size. F.g., in plane formulations,

a — a3x1:{a1170227\/§al2}7

1111 1122 V2A1110
A — Azxz = Aozo2 V2 Ano1o
sym. 2A1012

Two examples of reduced-dimension formulations will be presented: one-
dimensional bar and plane stress. Both are limited to isotropic elastic behaviour
and small deformation description, i.e. Egs. (3.99) (3.104) (for @« = 1) and
(3.111)—(3.113) must be fulfilled.
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3.3.3.1. One-dimensional bar

In this case, stress and strain are expressed as 6x1 vectors

O':{O'H,0,0,0,0,0}, deVO':{%O'”7 *%O’H, *%0'”,0, 0, 0},
()LZ{Oé”,O,O,O,O,O}, devaz{%a”, —%a”, —%04”,0,0,0},
e={e|,€1,€.,0,0,0}. (3.147)

where the indices || and L denote axial and transversal components.

Assume that all quantities, including eéP are known at ¢,, and the axial strain
increment AeH is given at t,41, while O|n+1 and Ae | are unknown. Recalling
the additive formula (3.99), elastic equation (3.100), and the assumption of
isotropy, we have

Ae] = —vAe|, Ao = EAgj.

Besides, Eq. (3.104) yields in this case

" faoa ~ VBV 000}

AEH = AeP, Aeh = —ZAeP.

while from Eq. (3.106) we have
Aa” = H;H_lAép .

Gathering the above results we can easily derive the formula for equivalent stress
Ont1 = O+l = Ant1 = (0 — ), + B(Aey — A®) — H,, , AP,

or
Fnt1 = Gtrial — (B + HJ, 1) AeP, Tirial = (0 — o)), + EAgy,  (3.148)

which, when substituted to the consistency condition (3.111)-(3.113), yields
a scalar nonlinear equation to be solved with respect to AéP.
The compact step-by-step algorithm for this formulation is displayed in Ta-
bles 3.6-3.7.
Differentiation of equations in the tables leads to the following scalar tangent
stiffness value consistent with the time integration scheme (cf. Eq. (3.94)),
dojnt1  dojnsr

f
C= — — E(1 ), - .
dejnir  dAgy =7 ! f Ap

(3.149)

(for instance, for linear hardening rate-independent plasticity we have v =
E
poswezs f
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Table 3.6. Solution algorithm for small-deformation 1-D bar formulation (for
the sake of legibility, subscripts (n+1) and || have been omitted)

Given
state parameters® z, = {0, , a,,, €2 } at t,,
strain increment Ae
compute
state parameters (including stress) z={o, «, e? } at t,41,
transverse strain increment Ae |

using the following scheme:

1. Oirial = 0n + EAc — trial stress

2. Ot¢rial = Otrial — %an — trial equivalent stress

if Guia — k(eR) >0 (plastic flow) then®

3. AeP=AeP? <+— from Table 3.7 — equiv. plastic strain increment
4. Aey = —v(Ae — AeP) — LAeP — transverse strain increment
5. 0= 0tial — EAeP

a = ap + H' AeP update state parameters

e = & + AeP
else (purely elastic deformation)
6. 0 = Otrial, a = Qy, el =eb — update state parameters

end if

@ if H = const (no kinematic hardening) then o = 0 is not a state parameter and

all relevant computations are skipped
b for the power-law strain/strain-rate hardening viscoplasticity this condition is

always fulfilled, except for Giria = 0
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Table 3.7. Solution algorithm for the equivalent plastic strain increment AeP,
1-D bar formulation

AeP =0
eP = eP + AeP
7 = Tial — | B+ H'(eP)] AeP, G.ner = —|[E + H'(eP) + H"(eP) AeP]

f, fAéP <— from Table 3.3
S(AeP) = —f2L, f, AeP = AeP +5(AeP)
if |[6(AeP)|| > tol then go to step 2; else exit

ANl S

3.3.3.2. Plane stress

The plane stress formulation presented below follows the idea of [116], writ-
ten in slightly modified notation, and extends that formulation by including
viscoplastic effects, cf. [68]. Assuming the coordinate xs to be perpendicular
to the model plane, we can represent stresses and strains in the vector/matrix
notation by reduced-dimension vectors

o = {o11, 022, V2012 },
a = {a11, az, V2a12 }, (3.150)
€ = {611, €22, \/5612},

with all the other components equal to 0 except for the transverse strain,
€33 = €1, whose value is related to the other strain components through the
constitutive equations. The reduced-dimension matrix form P of the deviator
operator P =T — %I ®1,

0
0
1

hU

Il

|
O Wi wiN
O Wl ol

can be, however, used only with respect to stresses, since it assumes the
operand’s transverse component to vanish. The operation Po allows to de-
termine only in-plane components of deveo; the non-zero transverse component
can be determined from the condition tr(deve) = 0. The norm of the stress
deviator equals in this notation ||deve|| = VolPo.
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For isotropic elasticity, transformation of the constitutive tensor (3.26) ac-
cording to Egs. (3.27) and (3.150) leads to the matrix representation

0
0

1
v (3.151)
0

O = X

1—v
and the elastic transverse strain increment is expressed as

e _ 4 e e :_Z
€1 = —1_V(511+522) E(011+022)-

The plastic transverse strain increment, due to incompressibility, must be
efl = —(ef) +eby).

Transforming Eqgs. (3.99)-(3.104) for @« = 1 and denoting ¢ = o — a (i.e.
s = devg = Pq) and gyia1 = 65, + C°Ag, we come at the following relations,

opt1 = o, + C(Ae — AeP), (3.152a)
Ont1 = /st 1 Py, (3.152h)
H'AeP
Qpil = O + — Sn+l, (3.152¢)
On+1
3 _ Pgn—i-l
AeP = \/jAep Sl 3P, 3.152d
25 Pey] 1o (3-152d)
where
3AeP
A= (3.153)
2041

Combined, they lead to the relation

Z Sn+1 = Strial (3154)
with
Z = 91+ \C°P, =1+ 2\H,_,. (3.155)

Equation (3.154) indicates that in the reduced-dimension plane-stress space
the relative stresses ¢, 1 and G,i5 are not proportional. Nor are their deviators,
as it would be in the 3-D space, cf. Eq. (3.108). This means that the computation
of the plastic corrector (i.e. mapping of G onto the plastic flow surface) does
not conform to a radial-return scheme. However, Eq. (3.154) combined with the
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consistency conditions (3.111)-(3.113), form a set of nonlinear equations that
can be iteratively solved for unknown g,1, AéP (or g,41, A).

It appears that, at least for linear kinematic hardening (H' = const), it is
much more convenient to formulate the solution scheme in terms of the un-
known A, rather than AeP (as it was done in the 3-D formulation). Differenti-
ating Eq. (3.154),

d§n+1

Z—h = (2H'I+ C°P) Gp41 (3.156)
and realizing that, cf. Egs. (3.152b), (3.153),
dAeP 2 _ d6n+1 d6n+1 3 T d§n+1
=3, A , = — P ,  (3.157
a3 <U AT > o P G157
we can formulate the following iterative scheme to find A,
£(1) . 4
— 5/\:—% — AFD N0 L5y
i (3.158)
1:=14+1
in which
. Of dopi of af \ dAe? dG 41
= =9 9 3.159
IX= ey ax T <aeg+1 e ) o T hiTa t (G159
af 2 of of
0 - A 3.160
LT 95 3 (aegH T one ) (3-160)
2 of of
Y9 = =y — . 3.161
2 = 3o <aeg+1 * 8A6P> (3.161)

A compact step-by-step algorithm of incremental constitutive computations
for small-deformation isotropic plane-stress elasto-plasticity is displayed in Ta-
ble 3.8. Additionally, Tables 3.9 and 3.10 display the iterative routine to com-
pute, for different elasto-plastic and elasto-viscoplastic models, the consistency
parameter A and relative stress ¢ needed in Step 4 in Table 3.8.

To avoid frequent inverting of the matrix Z, it is advisable, cf. [116], to

perform the iteration loop in a stress-space coordinates rotated by /4, i.e. to
define

$=Q%, &uwiw=Q s, P=Q"PQ, C =Q'cqQ, I-=1,



3.3. Time integration of constitutive equations 7

Table 3.8. Solution algorithm for small-deformation plane stress elasto-
plasticity (for the sake of legibility, subscripts (n+1) have been omitted)

Given
state parameters® z,, = {0, , o, , €2 } at t,,
strain increment A€
compute
state parameters (including stress) z = {0, o, e} at t,41,
transverse strain increment A€ |

using the following scheme:

Oirial = 0, + C°Ae — trial stress

2. Grial = Ogrial — Oy — trial relative stress

3. Gtrial = /5 Sthia1 PStrial — trial equivalent stress

if Giral — K(e2) > 0 (plastic flow) then®

4. A\, Gg, 5 <+— from Table 3.9

5. AeP = A\Pg, Ae® = Ae — AeP  — plastic & elastic strain increment
6. Ac; = —v(Ac§, + AcS,)
— 2(Aeh, + Aehy) — transverse strain increment

7. =0y + 2AH'S
o=q¢+x update state parameters

eP =eb +2\o
else (purely elastic deformation)
8. 0 =0yal, o=0o,, eP =eP — update state parameters

end if

@ if H = const (no kinematic hardening) then ¢ = 0 is not a state parameter and

all relevant computations are skipped
b for the power-law strain/strain-rate hardening viscoplasticity this condition is

always fulfilled, except for Giria1 = 0
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Table 3.9. Solution algorithm for the consistency parameter A\ and relative
stress § for the small-deformation plane-stress formulation, cf. Eq. (3.158)

A=0

O=1+2)H.,,, Z=vI+AC°P

¢ =Z "Quial, 0 =4/3¢TPg

AeP = 2X\5, &P =éb+ AeP

sy=-Z ' ((3H'1+CP)s, 0o, ==¢"Pg,,
fo fa  — from Table 3.10

A=—f3'F,  A=A+0A

if [|0\]] > tol then go to step 2; else exit

® NS TR ® N

Table 3.10. Computation of f and f » for different elasto-plastic and elasto-
viscoplastic models

if (rate-independent plasticity) cf. Eq. (3.112),

la. f=05—k(eP)

2a. U1 =1-2\&, y=-—

oK'

win

else if (overstress viscoplasticity) cf. Egs. (3.113), (3.119),

1b. g = ﬁ (6255(5;)) , f= At? ,__Aép
2b. g5 = #Tép) ) ger = —0.5 U:(;))

8b. U1 =Atgs— A1 —Atger), Uy =—326(1—Atger)

else if (power-law hardening viscoplasticity) cf. Egs. (3.113), (3.120),

1 1
1c. 91:E€0 (1—}—5—2)", g:€0 (gil)m, f:Atg—Aép
2c. 96 = %7 Ger = _mn(é%+so)

3c. U1 =Atgs—2XN1—Atger), Uy =—25(1—Atge)

end if

4. ))\21915')\4-192
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with
1 1
vz vl
Q= B )
V2 V2
0 0 1

The matrices P and C° appear to be diagonal,

FE )
1—v’ 14v’ 14v

[f’ij] = diag [ , 1, 1] , [ij] = diag

3

Wl

which results in a diagonal, easy to invert, rotated matrix Z. Performing the
computations in Table 3.9 in these rotated coordinates, with yial = Q7 Serial as
input and with the output transformed to ¢ = Qg, makes the algorithm more
efficient.

The algorithmic tangent operator consistent with the time integration
scheme, cf. Eq. (3.94), can be expressed in the following (3x3) matrix form

_ do'n—f—l

~ depi - [Ce_l +35 (P + 71_1 (Psni1) (P§n+1)T>} - (3.162)

(see Appendix A.3 for detailed derivation and explanation of the symbol 7).

3.4. Space- and time-discretized formulation of nonlinear statics

3.4.1. Spatial approximation of the displacement field

Solution of the variational problem (3.6) will be sought for in an approximate
form with the use of the Ritz method. In particular, the finite element method
(FEM) formalism will be utilized, see e.g. [8, 49, 141]. Consider a subspace of
kinematically admissible fields of displacements

u,-(Xj,t) = ¢m(Xj)qa(t), Z,j = 1, 2,3, o = 1, s ,an, (3163)

where ¢;, are prescribed shape functions defined for X; € Q", corresponding to
Npp parameters q, . The latter are associated with N, material points called
nodes (N, = NpNp, N, is the number of parameters per node), so that each
index value o € 1,..., N, can be expressed by a pair of index values (a, A),
ac(l,...,Ny|, Ael,...,Ny],

Ja = aA ¢ia = ¢iaA .

In the following derivations, the parameters at a particular node will be iden-
tified with the displacement components at this node (i.e. N, = 3 in the general
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case, while NV, < 3 in reduced-dimension formulations) and a displacement
field component u; will be assumed to depend only on those nodal parameters
da = qqa for which @ = i (continuum element formulation). Assuming differ-
ent displacement field components to be approximated by the same the shape
functions, we can write

¢7ja = (biaA = q)A 51'(1

where ;4 is the Kronecker symbol and 4 are the nodal shape functions. Equa-
tion (3.163) thus becomes

ui(Xj,t) :q’)A(Xj)in(t), i,jzl,...,Np, Azl,...,Nn. (3164)

Clearly, ®4(X;) must take the value 1 at the node A and 0 at every other node.

Variation of the kinematically admissible approximate displacement field du;
at a given time instant ¢ is associated with variation of the nodal parameter
array 0q, at this time instant. Thus, Eq. (3.6) (with the modification (3.11))
can be rewritten in the form

fa 6q0 = £ Q0 (3.165)
where

0 = | fowd2+ [ idad(o9), (3.166)

fint = /Q 5ijBija dQ (3.167)

are the arrays of external (load-resultant) and internal (stress-resultant) nodal
forces, and the geometric operator Bjj, is defined as

(5&:;3 = Bija (5qa or (5&:,']' = sym(éija) (5qa (3.168)

for each specific tensor strain variation measure. In view of symmetry of o;;,
the operator Bija can be used equivalently with sym(éija) in Eq. (3.167). Ex-
pressing the deformation gradient as! Fj; = 0;; + ¢injqa, we can write, cf.
Eq. (3.10),

Bijo = dia,j for 6 =0, 0€ = Je,
Bijo = | Bija = Fhidhay  for 6 =T, 66 =0E, (3.169)
bija = ¢ia,kF];jl for ¢ =71, 0 = de,

!The notation (-) ; stands for spatial differentiation of (-) in the reference configuration C".
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i.e.,

/ 0iiBija dQ2 for small deformations,
fiant _ Qr

(3.170)
/ T;iBija dQ) = / Tijbija dQ for large deformations.
Qr Qr

Clearly, both &;; and Bija depend on qg (only for small deformations the
dependence Bijn(qs) can be neglected), thus fi* = fii(qg). The external
forces f&' may in general also depend on qz (e.g. follower forces) but this case
will not be considered in our formulation.

Since Eq. (3.165) is supposed to be fulfilled for an arbitrary displacement
variation, the solution of the nonlinear static problem consists in solving the
nonlinear algebraic system

f(as) =10 or  FM(q) = (3:171)

with respect to qg(t) at each ¢t. This obviously requires substitution of the
appropriate constitutive equations and geometric relations to determine the de-
pendence &;;(qg) and B;ja(qs) in fi". Together with these equations, Eq. (3.171)
forms a system of nonlinear differential equations with respect to the array of
unknown time functions qg(t) and constitutes the spatially discretized problem
of continuum statics.

3.4.2. Approximate time integration

If the constitutive model is path-independent (elasticity), Eq. (3.171) may be
solved independently for each time instant t. Otherwise, the solution consists
rather in its time integration with application of the rate-type constitutive equa-
tions (3.15).

Recalling considerations of Section 3.3, let us discretize the time axis t > 0
by introducing a monotonic series of time instants tg = 0, t1,%9, .... It has been
demonstrated in Section 3.3, for different constitutive models and for different
stress/strain measures, that appropriate time integration of a constitutive equa-
tion allows to express stress g,.1 as a function of deformation at ¢,,; and ¢,
and of certain state fields at ¢, , cf. Eq, (3.93). The geometric operator éija at
tn+1 is a function of deformation at ¢,41. Thus, fi,?}rl can be expressed as an
array of functionals

frts = fby (B (X), Fu(X), 20 (X)) (3.172)
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whose first two argument fields F,,;1 and F), explicitly depend on q,,; and
q,, , respectively. Realizing that spatial integration in Eqs. (3.166)—(3.167) is
performed in an approximate manner, we can represent the state fields z at
any time instant by a discretized array z of their values at a number of certain
material points. This allows to formulate the system (3.171) at ¢ = t,, 1 in the
form

fir?—t-l(qn—i-l y Qi s Zn) - fz}il (3173)

from which q,,,; can be determined, provided q,, and z,, are known. Proceed-
ing with the solution from ¢ = ¢y through the subsequent time instants and
appropriate updating z,, from step to step,

Zp+1 = Z?’L+1(qn+1 » iy s Z’rb)a (3174)

allows to solve the transient problem in the entire time domain of interest.

Equation (3.173) is a system of nonlinear algebraic equations with respect to
the array of unknown nodal parameters q,,,; and it constitutes the space- and
time-discretized problem of continuum statics. Defining the array of residual
forces,

i1 (g1 s Gn s Zn) = ffz)il - flr?il(%ﬂv ., Zn), (3.175)
we realize that Eq. (3.173) is a particular form of the general formulation (2.25)
with 777, identified with F,; (in its path-dependent form (2.32a)), and with
the set of discrete variables {q,,, z,,} identified with s,,. The discretized in-
put p present in the general formulation is involved in various ways in particular
forms of £}, and its arguments. For the special case of elasticity, dependence
of "', (and consequently fi,) on q, and z, is neglected and the general
path-independent form (2.26) is realized instead.

3.4.3. Solution method

The system (3.173) can be solved iteratively with the use of the following
Newton—Raphson scheme, cf. Eq. (2.35),

)  eres (i (i+1) _ (@)
— K, oq=F£%() —~ q)) =aq,), +dq (3.176)

t:=14+1 -~

S_)H is the ¢-th approximate of the solution

4,1 (the initial predictor is set as, e.g., qgloll =q,), and the loop is repeated

where 7 is the iteration counter, q
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until the corrector dq gets sufficiently small. The latter is determined in each
iteration as the solution of the algebraic equation systems with the right hand
side vector f}7; and with the operator K, defined as

K _Jan Kppy = — Jntt 3.177
T Ndagen " gy AT
n

called the algorithmic tangent stiffness matrix of the system. In the considered
case of deformation-independent external loads, the matrix can be expressed as

dfint dfint
Kagnit = —L o Ky = —2FL 3.178
B n+1 dqg il +1 dqn+1 ( )
Substituting Eqs. (3.169)—(3.170) to (3.178), we come at
do;;
Kap = / ST B dQ (3.179a)
Qr dqﬁ
for small deformations, and
dT;; Bija
Kag = / <—J Bija + T dBija >dQ
or \ dag dqgs
dryj dbjja
_ / <ﬂ bija + Tij —2 > 40 (3.179b)
'r dq,g dqﬁ
for large deformations. In view of
dFi; d i;l —1 -1
— g s =_F Ft,
das _ Vi das ik PrseF
we have
dBija dbija
——— = Pka,iPka,j » —% = —biabrjs - 3.180

Recalling definitions of algorithmic stiffness tensors (3.94)—(3.97) and employing
their symmetry with respect to the last two indices, we get

de kl

doij = Ciji das dag = Cijrt Brig dag, (3.181a)
dF
dTij = Cij ng das = g Bris dgg, (3.181b)

dex dFi, 4 dFy
Arii = (g ok 4 S R w——— ') d
Tij <C2Jl~cl dag + 715 das kT Tik das Ik as

= (c4jr1 brig + 115 bug + Tir bjrg) dag, (3.181c)
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and we can finally express the algorithmic tangent stiffness matrix as

Kag = o BijaCijkiBrip dS2 (3.182a)
for small deformations, and

Kag = /T (Bija%ijkiBrig + Tijdra,jPrp,i) A2, (3.182b)
or, equivalently,

Kag = /QT (bijatijribrig + Tijbrjabrig) A2, (3.182c¢)

for large deformations.

The above solution procedure is efficient in the sense that it guarantees
quadratic convergence of the iteration loop (3.176). However, its weakness lies in
the necessity of decomposition of the usually very large matrix Kffll in each it-
eration, which is a computationally expensive routine. A frequently encountered
modification to the solution procedure, which may (but does not have to) im-
prove its efficiency, consists in the use of an unchanged matrix (e.g. K;Oll =K,)
in each iteration run. This slows down convergence, increasing the necessary
number of iterations, but this drawback is rewarded with low computational cost
of each of them (except for the first one, only a back-substitution is required to
solve the system of equations, after the new residual vector is created). How-
ever, it will be shown in Chapter 4 that the use of the most current, exactly
derived algorithmic tangent stiffness matrix is essential from the point of view
of the sensitivity analysis. Thus, only the solution algorithms that conform to
the scheme (3.176) will be considered in this study.

Another modification to the procedure (3.176) is encountered in cases of
a nonsymmetric stiffness matrix. Note that, in view of Eqs. (3.182), K,p is
symmetric if (and only if)! the corresponding algorithmic constitutive stiffness
tensor Cyjrr, €ijki, OF ¢;55 exhibits symmetry with respect to the pairs of indices
{ij} <> {kl}. Tt has been shown that in some cases, cf. e.g. Eqs. (3.144)—(3.145),
this condition may not be fulfilled. Since equation systems’ solvers assuming
symmetric coefficient matrices are more efficient than others, and since the
nonsymmetric terms in ¢;jz; are of low order of magnitude, it is reasonable to
decompose only the symmetric part of K,z in (3.176). This may again slightly
slow down convergence but does not affect the final solution. It will be shown
in Chapter 4 how this issue is dealt with in the sensitivity analysis.

'The obvious symmetry of Tj; and 7;; is not mentioned.
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3.4.4. Enhanced formulations of FE strain approximation

The approximation of the displacement field (3.163) and the corresponding ap-
proximation of strain (3.168)-(3.169), associated with the simplest possible (and
thus most frequently used) bi- or tri-linear isoparametric element shape func-
tions ¢ja, cf. e.g. [8, 49, 141], proves to perform poorly in presence of incompress-
ible or nearly incompressible deformations of modelled continuum. In particular,
the isochoric plastic flow, when modelled with such spatial discretization, leads
to solutions suffering from errors due to volumetric locking. Various modifi-
cations have been proposed to overcome the difficulties. Here, the enhanced
assumed strain method [88], being a finite-deformation generalization of the
selectively reduced integration (B-bar) approach [48], will be applied.

The method consists in splitting of the FE interpolated deformation gradi-
ent Iy = d;j + ¢in,j 9o into multiplicative superposition of the volumetric and
isochoric components (3.33)—(3.34) and modify it by replacing the volumetric
part [ = J %(5@- with its equivalent counterpart Fi‘; =J %6,-3- averaged over the
volume of the corresponding finite element. The latter can be determined from
the relations

J= det[ﬁij] ) Fij = 0i5 + (igia,j Qo s

where (ﬁi(m’ are averaged values of shape function gradients ¢;, ; over the ele-
ment volume. Thus, the modified deformation gradient, used in the kinematic
relations, has in the 3D case the form?!

_ \#
Py = <j> Fy. (3.183)

It is easy to verify that det[F;] = J.

Such redefinition of the deformation gradient affects values of strain varia-
tions 6&;; and stresses ;; present in the formula for internal forces fi'* (3.167),
which now also have to be replaced with their modified, ‘barred’ counterparts.
Naturally, the forms of the tangent matrix K,z will also change.

Employing the differential formula

dJ = JF;; dFj;

'The notation Fj;, traditionally used for the modified deformation gradient, should not
be confused with a similar (and also traditional) notation used in Eqgs. (3.33)—(3.34) for the
isochoric part of Fj;; nb. the modification (3.183) affects only the volumetric part F}; while
the isochoric part remains unchanged.
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(which holds as well for the ‘tilded’” measures), we come at

wl—=

) 7 o
sz‘j = <_> [dFij + %(Fkll dFy, — Fkll dFlk)Fij

J
7\
= (j) (d)ia,j + gan]) an ) (3184)
where
Ba = %(Bu‘a — bjia) , bijo = ng‘a,kF];jl ; bija = ¢ia,kF];j1 (3.185)

(cf. definition of byjq, (3.169)). In the general case of large deformations, the
modified array of internal forces can be expressed as

fot = /Q TijBija d = /Q Tijbija dQ (3.186)

where Tij and 7;; denote stresses computed from the constitutive equations
for modified (‘barred’) deformation Fj;, and the ‘barred’ geometric arrays are
defined as, cf. Egs. (3.168) and (3.10),

del; = dFiy, Fyj' = bijo dqa dej; = sym(de}}) .
Denoting

7\
v = <7> : (3.187)

we can express them as

ija = VFki (Pka,; + 8aFkj) = UBija + 8aFkiFi; , (3.188)
ijo = (iak + 8aFir) Fk_jl = bija + 8a0ij - (3.189)

ol ol

In the small deformation formulation, deformation gradients Fj;, Fij and Fij
are replaced with corresponding infinitesimal displacement gradients

— . ~ o S 1/~ y
Uj,5 = Qsia,] Jda Uj5 = (,bza,] Jda 5 Ui = Ui + g(uk,k: - uk,k) 57,3 s

and both the large-deformation formulations can be reduced to

f;ntZ/ ‘_7ijgija dQ (3.190)
Qr
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with
dej; = du; j = Bijo dqa dé;; = sym(d&y;), (3.191)
and
Bijo = Bijo + 846 , g5 = 2(iai — Piasi) - (3.192)
To compute the modified algorithmic tangent matrix, let us first notice that
dv = 20ga dda, dga = 1 (&ia,jdﬁﬁl - %,deﬁl) = —hasdas,
where

hag = § (Bijagjw - bijabjw> :
This allows to write
dBija dBjja dv _ dg, = =
= — B 2B; —— F}; F,s
dq,g v dqg + dqg ija T 8a 2Bijg + dqﬁ kil'kj
= UPka,jPrB,i + 288Bija + 28aBijs — 28088 FkiFkj — hapFriFk;
dBija dbija dga
e oY S — _b.y-biia —hoadis
d(w dCIg + dqﬁ ij ilaPljs af0ij
= _BilaBljB + gaBijB + gﬁBija — (8a83+hap)dij -
In view of the fact that, cf. Egs. (3.181),
d,fij _ -~ a7 B _ - -
das = CijrBris HZ’ = Cijribrig + Trjbirg + Tubjis
(where the tensors @ijkl and ¢;;x; are computed in the same way as &;;; and
¢ijki » respectively, but for the ‘barred’ deformation state), we can finally write

=/Q (Bija€ijkiBris + T;iDijap) A2, (3.193a)

Dijas = VOkajPksi + 285Bija + 284Bijs — (28085+has) FriFrj,  (3.193Db)

_ A7 - dB
ch = _”b..a_|_7*-.. Ua)dQ
’ /m(d% Ve dag

:/Q (bijaCijkibris + Tijdijas) A2, (3.194a)

dijap = brjobris + 28sbija + 28abijs — (28485+has)dij - (3.194b)
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In the latter equations, symmetry o the stress tensors Tij and 7;; has been
utilized. For small deformations, the geometric array B;j, does not depend
on qg and thus the above equations reduce to

_ dg;; ~ _ _
Kag = / % Bijo dQ = / BijaCijkiBrig dS2 . (3.195)
T qﬁ Qr



Chapter 4

Sensitivity analysis of elasto-plastic static
equilibrium problem

This chapter contains the main, original part of the thesis. In the beginning, the
problem of sensitivity of the discrete primary problem presented in Section 3.4
is formulated, for both small- and large-deformation cases. Attention is focused
on computational aspects of DSA, including, among others, the role of the con-
sistent, algorithmic tangent operator. The problem of shape sensitivity is also
addressed — it is demonstrated that there is actually no fundamental difference
between the DSA formulation for shape and non-shape design parameters. Fur-
ther, the incremental constitutive equations of elasticity and elasto-plasticity,
cf. Section 3.3, are differentiated with respect to design-dependent input param-
eters in order to determine partial and total design derivatives of response state
fields necessary in the global sensitivity formulation. Linearity of the sensitiv-
ity formulation a time step is underlined, even in presence of highly nonlinear
plastic consistency equations in the constitutive model. Resulting formulations
are presented in a form of closed-form algorithms, readily implementable in
computer programs. A number of numerical examples illustrate the presented
computational algorithms and inspire discussion.

4.1. General discrete formulation of nonlinear static response sen-
sitivity

Let us start from recalling the space- and time-discretized formulation of non-
linear statics (3.173)—(3.175) at t = t,,41,

fl‘eS(q, qdn Zn) = Oa zZ= z(q, q., Zn)a (4'1)

89
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in which, similarly as in all the following derivations in this section, indices n+1
are skipped for better legibility of the formulae.!

As already mentioned in Section 3.4.2, Eq. (4.1) is a particular form of the
general discrete system (2.25) (in the path-dependent form (2.32a)) for ¢ = ¢,,4;.
The discretized input p, present in the general formulation, is involved in various
ways in particular forms of fi7; and its arguments, and it is not explicitly
displayed in equations of this chapter. Instead, the design parameters h is
assumed to explicitly and/or implicitly affect all the above functions and their

arguments, so that we can write

" (a(h), q,(h), z,(h); h) =0,  z=2z(q(h), q,(h), z,(h); h). (4.2)

Recalling conclusions of Section 2.2.2, the discussion of the sensitivity formu-
lation in nonlinear statics will be limited to DDM. General formulation in the
path-dependent case, cf. Eq. (2.39), has, in the notation of Section 3.4, the form

K dnq = dpf (4.3)
where

A gres res dfe df T

Opf™® = dpf |frozen q= E ahqn + E Onz, + Opf™ (4.4)

(since both the primary and sensitivity solutions at t = t,, are assumed to be
known and constitute an input to the problem written for ¢t = ¢,,41, the design
derivatives of q,, and z,, will be considered ‘explicit’ and denoted by dnhq,, and
Onz,, respectively). Introducing a simplified notation dypy f for a partial design

derivative of a function f(...,b(h),...;h) taken at its argument b frozen,
0
dpif =dnf — a—i dnb, (4.5)

where f and b are quantities of any (scalar, vector, tensor, etc.) type, we can
equivalently write

~

Onf' = dpf™™ . (4.6)

The computation of the response sensitivity consists in determination of the
discrete right-hand side vector Onf"™ and solution of the system (4.3) with

!This omission may, however, cause some confusion as e.g. the notation q, understood
here as q,,,, , has different meaning than it had in Chapter 2, where it denoted the entire
time-domain array {qg, d;, ..., dg, ...}. Let us underline that the following derivations
correspond to only a single time step, and the array q in its former meaning will never appear
in this section’s formulae.
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respect to the unknown array dnpq with the use of the most recent stiffness
matrix K® decomposed in the equilibrium iterations (3.176). Then, design
derivatives of the state parameters have to be updated and stored for the next
time step computations,

dz dz dz
dvz=—d - _ " , 4.7
b= Gt 0, Ot bz (47)

Finally, the updated values of performance functionals related to t = ¢,,41 can
be determined from Eq. (2.36) or (2.46), depending on the particular form of G.
The latter issue will not be a subject of interest in this section — in view of
the assumed explicit dependence of G on the response and design parameters,
this is usually not a mathematically complicated task, while a wide variety of
particular forms of G makes it difficult to present the issue in a compact and
unified manner.

Table 4.1 presents the scheme of computations for both the primary equilib-
rium and the design sensitivity analysis at a typical time step [t , tn+1]-

Since the state parameters z are constitutive state variables computed at
particular material points, detailed update formulae for their sensitivities dyz
will be a subject of Section 4.2. In the following part of this section, attention
will be focused on the methods of determination of the explicit derivatives of the
residual forces, O,f"™, i.e. the right-hand side array in the sensitivity system of
equations (4.3). Since external loads fi and #; are assumed to be deformation-
independent, it is easy to conclude that

éhfres _ 8hfext - dh!qfint ’ éhf;es — 8hf§"t - dh!qf;nt ) (4‘8)

Two cases will be distinguished: (i) design-independent geometry and (ii)
a more general case of design-dependent geometry (shape sensitivity). By ge-
ometry we mean the spatial positions " of material points in the initial, unde-
formed configuration of the body, identified here with the reference configuration
on which all the state fields are defined, i.e. C° = C" and 2" = X.

4.1.1. Design-independent geometry

If the set of design variables h includes only parameters that affect material con-
stants, sizing variables (i.e. local thickness, cross-section areas, etc.), or external
loads and boundary conditions, then the initial geometry of the model is design-
independent (X # X (h)). In particular, the integration domain Q" # Q" (h),
and for all integrals over Q" we have

dn [/T(-)dﬂ} - /Tdh(~)dQ (4.9)
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Table 4.1. General scheme of computations for both the primary equilibrium
and the design sensitivity analysis at a typical time step [t,, , t,+1] (DSA modifi-
cations to the pure primary algorithm are gray-shaded). Indices n+1 are skipped
for better legibility

Input: C d,:2Zn, Onhd,, Onzn )
1:=0
q” :=aq,
loop over assemble £ (V) and K
elements primary
matric l equilibrium
decomposition K® §q = fros () i analysis
and backward q(i+1) _ q(i) +4q ’
substitution I
‘ check convergence ‘ o
lyes
lolop ovc;r assemble 5hfres
elements
l sensitivity
analysis
Ny ba'cku')ard K dngq — Onfe
substitutions
Z:Z(q, qnv Zn)
loop over 2 52 52 update
elements dnz=—d — 0 —— Onz,
h o nq + aa. hq,, + 5z, On

|

Output: ( q,z, dnq, dnz )
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(the same rule holds for boundary integrals over 9€Q2"). Besides, the shape

functions and their gradients are design-independent, too, i.e. Ongin = O,
8h¢w7j =0.
The design derivative of the external force array is thus expressed as
OnfS = | OnfidiadQ+ | Onli dia d(0Q) (4.10)
Qr oar

and can be explicitly determined at each time instance. The explicit design
derivative of the internal force array is expressed by a general formula, cf.

Eq. (3.167),

dpigf™ = / (dh!q&ij Bija + ij dh!qBija> dQ, (4.11)
Q'r

in which the explicit derivatives dniq0;; and dpigBijo have to be evaluated
separately for different geometric descriptions of deformation and associated
stress/strain measures. Generally, the derivation consists in writing down de-
tailed formulae for the total design derivatives dd;; and dhéija and then re-
moving from them all the terms that contain dnq (i.e. retaining only those
containing explicit design derivatives).

Let us first notice that the geometric operator Bija , cf. Eq. (3.169), is either
design-independent (as in the small deformation case),

dnBija = dp@ia,j = 0,
or, in the large deformation case, it depends on design only implicitly, via q,

duBija = duFii Oka,j = Pra,jPrs,i dnds
dnbija = Giak thk_jl = —bjikabrjs dnags -

Thus, in all the cases we have dpigBija = 0 and Eq. (4.11) can be reduced to
dpigf™t = /Q dniqFij Bijo dS2. (4.12)
For small deformations, Eq. (4.12) takes the form
dpigf™ = /Q  duiqai; Bijo dQ. (4.13)

Noticing that the constitutive equation can be generally expressed as, cf. Sec-
tion 3.3.1,

g = U(Ea €n, Zn; h)a
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we can write

dpor = C s dpe + 27 dnen + 2% Oyzn + Ono (4.14)
Oe, 0z,

where the definition of the algorithmic constitutive tangent operator (3.94) has
been utilized. Besides, upon the general definition (3.168),
dneij = sym(Bija) dnda ,

so the first term in the r.h.s. of Eq. (4.14) is the only one containing the implicit
design derivative dpq. Moreover, it depends solely on dnq, i.e. dpiqei; = O.
Thus,

oo oo
dnliqo = dpleo = a—en : OnEn + (9—Zn : OnZn + Ono. (4.15)

Detailed computation scheme for dyiqo will be presented in Section 4.2.1.
For large deformations and material description, Eq. (4.12) takes the form

dpiof™ = / dh1q7}j Bija Q2. (4.16)
Qr
The constitutive equation can be expressed as

T= T(E, E,, zy; h),

so that

oT oT
oE, :OnEy, + 8—Zn : Onzyn + 0T, (417)

dpyT =€ :dnhE +

with € defined by Eq. (3.95) and
dnEjj = sym(Bjja) dnda,

i.e. dpiglli; = 0. Thus, the explicit design derivative of the second Piola—
Kirchhoff stress contains all but the first term in the r.h.s. of Eq. (4.17),
oT oT
dnegl =dpgT = — : L E — 0 onT. 4.18
hlq h!E o, hfn + oz, hZp + Oh ( )
Detailed computation scheme for dpgT is the same as for the small deforma-
tion case, upon only replacement of linear tensor measures with their large-
deformation material counterparts.
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For spatial geometric description of the large-deformation problem, Eq. (4.12)
takes the form

dh!qf(ilnt = /QT dhyq‘l‘ij bijadQ. (4.19)

The constitutive equation can be expressed as, cf. Section 3.3.2,

T = T(FvaZn;h)a

so that
or or or
dpt = 8—F cdpF + 8—Fn :onF, + a—Zn : OnZn + OnT, (4'20)
with

dnkij = Gia,j dnda ,
i.e. dpiqfi; = 0. Thus, the explicit design derivative of the Kirchhoff stress
contains all but the first term in the r.h.s. of Eq. (4.20),

or or
oF, :OnF, + 8—Zn : OnZn + OnT. (421)

Detailed computation scheme for dyiq7 will be presented in Section 4.2.2.

dhiqT = dnFT =

4.1.2. Design-dependent geometry (shape sensitivity)

Some design variables may affect initial geometry of the analysed body. In such
a case X = X (h) is considered a explicitly given field. Before formulation of
sensitivity analysis for such a case can be derived, let us first focus on particular
ways of explicit definition of geometry with the use of scalar design parameters h.

There are two commonly recognized approaches to formulation of sensitiv-
ity equations at design-dependent geometry: the material derivative approach
(MDA) and the domain parametrization approach (DPA). Discussion of their
mathematical details, including proof of their formal equivalence and consider-
ations on efficiency and applicability of each of them can be found e.g. in [65].
The approach outlined below follows the formalism of DPA, as the latter appears
to naturally conform to the isoparametric finite element formulation employed
in the numerical implementation of the presented DSA formulation.

In DPA, the design-dependent configuration C” is assumed to be an image of
a design-independent parent configuration CP in a one-to-one mapping parame-
terized by h,

X (h) = x(§,h), (4.22)
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13

&1

Figure 4.1. Domain parametrization approach

see Fig. 4.1. Denoting by F the mapping’s gradient in CP,

A _d)A(

F(h) = T (4.23)

and by J its determinant, J = det F, we can express design derivatives of an
arbitrary volume integral over Q" as

d [ / T(-)dﬂ] — d [ / p(-)fdﬂ} = [ 67+ 0 and] a
= /T[dh(-)+(-)tr(ahﬁﬁ—1)} dQ (4.24)

and of an arbitrary surface integral over 02" as

. [/am(') "Td(am] =dn [/am(-) F‘Tnpjd(m)]
[ O E w7+ e aom)
d

L

()
n()n" + () [ (0 F FY) — (9nF F~Y)T) n} d(09) (4.25)
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where n”(h) and n? denote normal surface unit vectors in C" and CP, respec-
tively.

The parent configuration C? and the mapping x can be defined in a variety
of ways. From the numerical point of view, it appears to be very convenient
to relate the mapping x with the assumed finite-element discretization of the
displacement field (3.163). Denoting by X = {X,} an array of nodal coordinates
in C" (obviously, X = X(h)) and appropriately defining in C? an array of design-

PN

independent functions ¢ (&), one can define the mapping x as

Xi(€h) = ia(€) Xa(h). (4.26)
It is easy to see that design-dependent functions ¢;q(X (h)) defined as
$ia(X) = dia (X 1(X)) (4.27)

satisfy requirements of shape functions in (3.163), and thus the spatial dis-
cretization (3.163) can be equivalently expressed in terms of design-independent
shape functions ¢ (&) defined in CP.

Defining in particular the configuration C? as a sum of repeatable unit cubes,
tetrahedra, and/or other simple polyhedra, and dividing the domain Q" into
subdomains (elements) of simple geometry being diffeomorphic images of the

&1

Figure 4.2. Domain parametrization approach in terms of the isoparametric
element concept
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above simple figures, we can generalize the above considerations and identify the
design-independent configuration CP with the parent configuration of isopara-
metric finite elements [49, 141], see Fig. 4.2. In such a case, functions ¢;q(€)
are usually simple form polynomials defined for each parent polyhedron type in
a way ensuring fulfillment of requirements of continuity and smoothness appro-
priate for the finite element method formulation. Division of Q" into elements
is obviously design-dependent, i.e. all the nodal coordinates X, are, as assumed
in Eq. (4.26), explicit functions of h.

Introducing the notation (-).; = 9(-)/0&; one can express the mapping’s gra-
dient and its design derivatives as

Fii = i Xas  OnFij = Giaj OnXa, 8hFika_j1 = Gia,j OnXa, (4.28)

and rewrite the general formulae (4.24)—(4.25) as

alf ao] = [ a0 ][ Gowsan]ax.. @)
| [ o) = [ augaen)

#1111 0090 | 0 (430

Appearance of the second terms (containing d,X,) in the r.h.s. of the above
formulae makes the fundamental difference between the shape and non-shape
sensitivity formulation. However, as it will be demonstrated, several further
differences may appear in the form of the first terms’ integrand dy(-), too.

Before we utilize Eqgs. (4.29)—(4.30) to write down the expressions on dy
and dh!qfint for the case of design-dependent geometry, let us make some obser-
vations about design-differentiation of displacement field and its gradient. Since
the volume integration in Eq. (4.29) can be as well performed in the parent con-
figuration CP, it seems reasonable to express the terms in the integrand as fields
on this configuration. As mentioned above, the shape functions ¢;,(X (h)) are
equal to design-independent functions ¢ (€), € = x (X)), and their design
derivatives computed in the parent configuration are null,

fext

Ondia = 0. (4.31)

The gradients ¢, ;(X (h)) can be mapped onto the C? as

¢ia,j = (Zgioz,j (57 h) = Qgia;l(g) ﬁ};l(ga h) (432)
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which allows to express their design derivatives in this configuration as, cf.
Eq. (428)3 y

Ondic = Piexi 311}%1]_-1 = il Fl;l O Fem Fyﬁ; = —Qiak Pipj OnXp. (4.33)

The fields w and F' can thus also be mapped onto CP,

u = ui(€,h) = $ia(€) qa(h), (4.34)

Fij = Fij(&,h) = 0i; + i j(§, h) = §ij + dia,j(&,h) qa(h), (4.35)
so their design derivatives in this configuration are

dhu; = ﬁgia dhqaa (436)

dnFij = Gia,j dnda + Ondia,j da = ¢i,j Ands — Uik Ora,; OnXp - (4.37)
From the latter two equations it can be concluded that

dniqui = 0, dniglij = —uik Orp,j OnXg. (4.38)

We can now write down the expressions on O,f* and dh!qfint for the case of
design-dependent geometry. Expressing the surface forces as t = T'n” where T'
denotes the known nominal (first Piola—Kirchhoff) stress tensor, we have

OnfS = | Onfi pia dQ+ / OnTijn} dia d(09)
Qr 8Q'r‘
+ [ 5 fi G drpk dﬂ} OnX3

i [/89 Tij Gia [ Gu e = i B d(m)] nXp , (4.39)
and
dpigf ™ — / (dh;q&ij Biju + 64 dh!qgim) 40
o
+ [ /Q Gij Bijo bk dQ] X . (4.40)

The first array, (4.39), contains terms that are explicitly known. In the other,
the derivatives dpiq0i; and dh!qéija have to be determined. Since both &;;
and Bija depend on initial geometry, the forms of their design derivatives are
different than those derived in Section 4.1.1.

For small deformations (6;; = oy;, éija = Bija = ¢ia,j), the total design
derivative of the geometric operator

duBija = —®iak Prs,j OnXp (4.41)
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is independent on dnq, and thus equal to its explicit part dpiqBijo . The total
design derivative of stress has the form (4.14), however, the design derivative
of strain, dhe = sym(dpe"), dpe" = dp(Vu), has now a nonzero explicit,
geometry-dependent part,

dne;; = dntij = ¢igj dnds — Uik Pks.j OnXs = Bijs dnds + dnigss;
with
dhyqé“;lj = —Ujk Bkjg OnXg . (4.42)

Thus, for the case of shape sensitivity, we have to complete the previous section’s
result (4.15) by

dhqu' = dpeo +C: dh1q€

0o oo
=0C: dh!qE -+ 8—5n : 8h€n + E : ath + 8}10' (443)

where, due to symmetry of C, the explicit strain design derivative dpiqe can
be replaced with dpiqe" (4.42). Detailed computation scheme for dpiqo will be
presented in Section 4.2.1.

For large deformations and material description (62-]- =T, éija = Bjja =
Fi.i®ka,j), the total design derivative of the geometric operator is expressed as

dnBija = ®ka,jPrpi dnds — Uk Pra,j P18, OnXp — Fli Gra, P18,5 OnXp
= Oka,jPkp,i(Anas + OnXp) — (Brja d1p,i + Bita d15,5) OnXp

and thus its explicit part has the form

dnigBijo = (Oka,iPkB,i — Brja Pks,i — Bika Ors,) OnXs - (4.44)

The total design derivative of stress has the form (4.17) and again, the design
derivative of strain dyE = sym(d,E"), d,E" = FTd,F has now a nonzero
explicit, geometry-dependent part,

dnEy; = FridnFyj = Fri (¢rs,; dnds — k1 @15, OnXp)
= Bijﬁ dhqg + dh!qEzl-lj , (4.45)

with

dniq B = —Friug1 15,5 OnXp = (Bijp — FriFki di15,5) OnXp - (4.46)
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Thus, the previous section’s result (4.18) has to be completed for the case of
shape sensitivity by
dnigT = dpeT + € : dpgF
oT oT
= € :dpgE + =— : OLE —: 0 onT 4.47
hlq +8En h n+8zn hZn + Onl), ( )

where, due to symmetry of &€, the explicit strain design derivative dpiqE can be
replaced with dpiqE" (4.46).

For spatial geometric description of the large-deformation problem (6;; = 75,
Bija = bjjo = qbz-a,kF,;le the total design derivative of the geometric operator
is expressed as

dnbija = dnia i Fy;" = diat Fiy' daFim Fryj = —bikabija(dnds + nXp)
and thus its explicit part has simply the form
dhigbija = —bikabkja InXgs - (4.48)

The total design derivative of stress has the form (4.20) but the design deriva-
tive of the deformation gradient dyF' has now a nonzero explicit, geometry-
dependent part, cf. Eq. (4.38)2,

dh!quj = —uLk ¢k,6,j 8hX5 . (4.49)
Utilizing Eqgs. (3.96) (3.97) we can also write
dr; = Cijkl dFym, Fn;ll + 715 dFj F];ll + Tik dFjl Flgl (4.50)

which allows to express the first term in the r.h.s. of Eq. (4.20) in the index
notation as
0ij
OFy

dnFr = Cijkl dnFrm Fr;ll + 715 dnFi Fk_ll + Tik thjl Flzl (4.51)

and, particularly, its explicit part as
0rij

dnigFrr = cijit dniqFem Fof + 715 dnigFik Fiyt + ik dnig Fjr Fipt
= — (Cijhl Wk + T1j Win + Tig Ujn) brig OnXg . (4.52)

Thus, the previous section’s result (4.21) has to be completed for the case of
shape sensitivity by
or

dnhiqT = dnpT + oF :dpigF (4.53a)
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with
or or
dppr = a—EL :OnEy, + a—Zn i Onzp + Ot (4.53b)
and, cf. Egs. (3.95), (3.97) and (3.98c¢),
0
a—; tdpgF = c: (dpgF F7') + dpgF F' 7+ 7 (dpgF F~HT,  (4.53¢)

where dpiqF is given by Eq. (4.49). Detailed computation scheme for dpiq7 will
be presented in Section 4.2.2.

4.1.2.1. Remark on uniqueness of shape sensitivity solutions

In the cases of design-independent geometry (Section 4.1.1), the explicit design
derivatives of the input fields can be usually defined in a strict, unique way. In
the problems with design-dependent geometry, typically understood as design-
dependent external shape, this advantage cannot be enjoyed. Explicit definition
of the relationships X(h) and the resulting design derivatives dnX (also called
design velocities) is nonunique and depends on the analysts choice to the same
extent as definition of the nodal coordinates X themselves, i.e. the finite element
discretization. Let us consider an example of a simple structure in Fig. 4.3.
Assuming the rounding radius to be the design parameter, h = R, there is an

ANy

Figure 4.3. Rectangle with a rounded corner, the rounding radius R is
the design parameter; left: geometry, load and boundary conditions (dotted
line indicates possible geometry perturbation); right: primary finite element
discretization
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a)

b) h

Figure 4.4. Consequences of different choices of the nodal coordinate design
velocities. Design sensitivity results obtained for the values depicted on the left
side (arrows denote the vectors 9, X for particular nodes) allow to approximate
the behaviour of a perturbed structure provided it is modelled with the mesh
presented on the right side

103
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infinite variety of possible design velocity definitions for the given finite element
mesh. The left column in Fig. 4.4 presents a few characteristic examples in
which (a) only surface nodes, (b) surface and neighbouring nodes, and finally
(c) all nodes in the mesh are assigned non-zero design velocity (denoted by
arrows). The sensitivity solution, which directly depends on these choices, is
nonunique, too. It is necessary to make a comment on this issue and to explain
physical meaning of this nonuniqueness of results.

Recalling the definition (2.11a) of a design derivative we can approximate,
for small perturbations dh, the perturbed response q(h+dh) by

q(h+dh) ~ q(h) + dnq(h) 6h. (4.54)

If the solution dnq(h) has been determined for an arbitrary dnX, the above
approximation can only be justified under the assumption that the perturbed
input conforms to the following scheme,

X(h+6h) ~ X(h) + 8,X(h) oh,, (4.55)

i.e. the perturbed finite element mesh is characterized by (i) the same topology
as the primary one and (ii) the nodal coordinates described with Eq. (4.55).
Thus, different nodal design velocities shown in Fig. 4.4a,b,c (left column), when
introduced as input to the shape DSA algorithm, will lead to the response
sensitivity solutions that allow to approximate with Eq. (4.54) the responses of
the corresponding perturbed structures shown in the right column of the same
figure.

A question arises, which of the sensitivity solutions is ‘correct’, or at least
‘most accurate’. Bearing in mind that what we call response q is actually one of
various possible discrete approximations of the continuum response fields, the
first answer is ‘each of them’, by which we mean that an approximate q(h),
corresponding to certain finite element discretization X(h), related to differ-
ent possible approximates q(h+dh), corresponding to different possible finite
element discretizations X(h+dh), may result in different sensitivity gradients,
depending on how the perturbations ¢h affect the primary discretization. Thus,
each of the sensitivity solutions is good for a particular way of understanding
the term ‘perturbed structure’ or, more strictly, ‘perturbed discrete model of
the structure’, expressed in the particular definition of design velocities O, X.

This answer is, however, unsatisfactory since it is commonly known that ac-
curacy of a finite element discretized problem solution strongly depends on the
mesh quality. This term is not easily definable in terms of mathematical formu-
lae but, based on results of error analysis in the theory of finite elements [141],
one can point out features of finite element discretization that may be reasons
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of potential inaccuracies of the solution (e.g. distorted or extremely stretched el-
ements, coincident nodes, etc.). Without coming into details (which are not the
subject of this dissertation) we can observe that, in the computational practice,
finite element meshes are constructed according to certain (precise or intuitive)
criteria of regularity, believed to ensure the lowest approximation errors of the
solution. It can be predicted that some design velocities 0y X of a good quality
primary discretization may correspond to design perturbations that significantly
worsen the mesh quality. On the other hand, the perturbed response one at-
tempts to predict with the use of the sensitivity gradient, Eq. (4.54), would
otherwise be sought for with a primary analysis featuring similar quality of the
finite element mesh. Thus, the answer to the risen question is that dpX should
be chosen in such a way that the perturbed finite element mesh, with the same
topology as the primary one and nodal coordinates defined with Eq. (4.55),
fulfills the same criteria of regularity as the one used in the primary analysis.
Coming back to Fig. 4.4, the solutions b) and especially ¢) define a much more
regular mesh perturbation (and are thus expected to yield better sensitivity so-
lution) than the solution a), featuring a few strongly distorted elements near the
perturbed rounding surface. If the perturbed structure were to be meshed and
analysed independently of the primary case, it is unlikely that the mesh a) would
be chosen; verification of the sensitivity solution would rather be performed with
one of the remaining two meshes in Fig. 4.4

Currently, the meshes are in most cases generated automatically with the use
of specialized algorithms that optimize their layouts with respect to prescribed
regularity criteria. If the criteria can be written down in the form of a general
scalar equation, e.g.

freg(xa h) =0

(where the argument h represents all design-induced bounds imposed on at
least some nodal coordinates), then the desired velocity can be determined from
differentiation of this formula with respect to h,

6freg o
8X5 8hX5 -+ ahfreg =0.

Unfortunately, most mesh generators will not provide us with such data like
On freg O Ofreg/OXp, however, their acquisition is possible upon implementa-
tion of the above equation in a mesh generating/optimizing algorithm. This
conclusion indicates a desired direction of research in this area.
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4.1.3. Enhanced formulations of FE strain approximation

The formulae for both shape and non-shape sensitivity presented in Sec-
tions 4.1.1 and, especially, 4.1.2, extensively utilize specific properties of the
finite-element discretization. It is obvious that they require appropriate modi-
fications if the enhanced interpolation of volumetric/isochoric deformation pre-
sented in Section 3.4.4 is applied. The modifications are derived and presented
below.

In the non-shape sensitivity analysis the changes are not significant. Since
the shape function gradients ¢;, ; are design independent, so are their averaged
values, ngd. Thus, similarly as in the unmodified formulation, the geometric
arrays Bija , Bija and Bija depend on design only through qg, which implies

dnigBija = dnigBija = dnigbija = 0.

The design derivatives of modified internal forces at frozen q are expressed, for
large deformations (cf. Egs. (4.16), (4.19)), as

dh!quant :/ dh!qﬁjéija dQ2 :/ dhyqﬁjbija dQ (456)
Qr Qr
and for small deformations (cf. Eq. (4.13)) as
dhigfl" :/ dnhiqTi;Bija d2. (4.57)
Qr

The partial stress derivatives appearing in the above equations can be deter-
mined in the same way as in the unmodified formulation, however, with ‘barred’
deformation measures taken as input, i.e.

dh!qT = dh!ETv dhyqf' = dh!ﬁvf', dhyq& = dpis0o.

In the shape sensitivity analysis, Eqs. (4.56)-(4.57) have to be extended to
the form

gt — / (dniq Ty Bija + T dniqBija) 42
= / (dhlqﬂ'j Bija + Tij dh!qBija) dQ (4.58)
for large deformations and

dh!qult = / (dh!qa'ij Bija + 0ij dh!qgija) dQ (4.59)
Q'r



4.1. General discrete formulation of nonlinear static response sensitivity 107

for small deformations. To derive the design derivatives of stress and geometric
arrays appearing in the above formulae, we proceed as follows.

The design derivatives of averaged shape function gradients (ﬁmyj can be ex-
pressed as, cf. Eq. (4.33),

8h¢31;a,j = <§£ia;l 8hﬁ‘l;1> = - <¢ia,k ¢k,3,j> 8hxﬁa (460)

where the notation ((-)) denotes averaged value of (-) on appropriate finite
element volume. Design derivatives of averaged deformation gradient are thus,
cf. Eq. (4.37),

dpFy; = <Z~5m,j dnag — (Ui k Prp,j) OnXp - (4.61)

Generalizing the formula (3.184), we can write down the total design derivative
of the modified deformation gradient Fj; as

AT B
dnFyy = <3> [anFy + 5 (B! anFi, — By dnFie) |

7\ u
= <j> [(pig.; + g6 Fj) dnas — (uik drsy — E5Fi) OnXal,  (4.62)

where gg is given by Eq. (3.185) and (utilizing u; ; = Fj; — d;5)

i

( W (Utm Smpk) — Fyg titm ¢mﬁ,k)
( it (Fim Gma) = By b1 — Fig' Fim Smpi + ' ¢l,8,k>

( i (Fn $ms k) —brrs — drp + bkk,B) ~gs— 8-

(OS]
@®

|
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1

ol

|
Lol

~ ngﬁ,k

From Eq. (4.62) we can easily conclude that

1
_ J\? 5
dh!quj = (j) (—ui,k ¢kﬁ,j + g,gFij) 8hX5 . (4.63)

To derive total and partial (at frozen q) design derivatives of modified geomet-
ric arrays Bjja, bijo and B;jq , let us first differentiate the expressions for b;jq,
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g and v, cf. definitions (3.185) and (3.187),
dpbija = Ondiak F,;jl — Gia s Fyt dnFip, Fnﬁ}
= —bpjabrjs dnds — [(DianPnsm) — ng,kﬁﬁl@l,n%ﬁ,@ Fnzjl- OnXp
= —brjabrjs (dnas + OuXp)
- |:<¢ia,n¢nﬁ,m> - d;ia,kﬁ‘k_l1<Fln¢n,8,m>:| Fn;jl ahX,B )

~0

dpga = —hag (dngp + OnXp)

(
- % [<¢ia,n¢nﬂ,m> - (zia,kﬁk_luﬂn(ﬁnﬂ,mﬂ Fn_wl 8hxﬂa
dpv = 2v (F;l thji - Fgl thji)
= 3V [(Bnﬂ — biig) dngp — (Fi§1<ua',k¢kﬁ,z'> - Fgluj,mw,i) 319(5}
= 2vggdnag + 2vgg InXja,

dngl, = Ongh = — % ((Diak Prpj) — Diak Phpj) OnXg .

The derivatives dniqbijo; dniq8a and dpiqu can be obtained from the above
formulae upon only setting dpqg = 0.
Now, differentiation of Eqgs. (3.188), (3.189) and (3.192) leads to the formulae

N wiN

dnigBija = v dnigBija + dhiqv Bija

+ dniq8a FiiFij + 28a sym(Fy; dniqFlj) » (4.64)
dpigbija = dnigbijo + dniq8a 0ij » (4.65)
dnigBija = dnigBijo + Ongh 0 , (4.66)

in which the unmodified derivatives dpniqBija, dniqbija, and dnigBija are taken
from Eqs. (4.44), (4.48) and (4.41), respectively.

The derivatives of modified stress appearing in Eqgs. (4.58)(4.59) can be
determined in exactly the same way as for unmodified formulation, i.e. from
Eqgs. (4.43), (4.47) and (4.53), with all strain and deformation tensors replaced
with their modified counterparts, i.e.

dniqo = dneo + C : dnig€, (4.67)
dh!qT = dh!ET + ¢: dhqu, (4.68)
dniqT = dppT + 8—7: : dh!qF, (4.69)

oF
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where
dnigfi; = sym(dniqliy),
dniqttij = — [wikdrpi+ 5 (uridip k) — ukidip k) i) OnXp

dniqEi; = sym(Fg; dniqF;)
and dh;qF’kj is given by Eq. (4.63).

Summarizing the contents of Section 4.1, the sensitivity computations for
the global equilibrium problem at a particular time instant of the assumed time
integration scheme consist in assembling the sensitivity r.h.s. array Opfres given
explicit design derivatives of known input data, solving the system of equations
with the coefficient matrix K against each column of this array (correspond-
ing to each particular design parameter) to obtain the array dnq, and, finally,
updating the sensitivities of the discrete state variable array dyz. All the compu-
tations have to be performed right after completion of the primary equilibrium
analysis for this step, but before update of the state variable array z (which
can be finally done simultaneously with the update of d,z). Detailed formulae
for some quantities necessary for the assembly of dpf™, like dniq0, as well as
update schemes for sensitivities of constitutive state parameters dyz; , can only
be derived from design-differentiation of particular constitutive equations. The
following section will be devoted to this subject.

Let us complete the considerations of this Section by one important remark.
The entire derivation of the sensitivity formulation for the discrete problem of
nonlinear statics is based on the assumption that the primary solution of the
system (4.1) is known at a considered time instant. On the other hand, we
know from Chapter 3 that this solution is sought for in an iterative scheme, cf.
Eq. (3.176), and is only known up to certain accuracy, depending on the assumed
convergence tolerance. This primary convergence error obviously affects the
quality of the sensitivity solution. We will refer to this issue in Section 4.3 while
discussing results of computational examples.

4.2. Design-differentiation of time-discrete constitutive equations

In this section, the constitutive algorithms presented in Section 3.3, will be ana-
lytically differentiated with respect to design h at a typical time step [t , tni1]-
As a result, updated design derivatives of stress d,,,41 and a set of appropriate
constitutive state fields dpzyp+1 will be derived. The former ones, dpé,41, do
not explicitly appear in the formulation presented in the previous section, but
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they will be investigated for three reasons: (i) as it will be demonstrated, the
forms of the explicit derivatives dpiq07,+1 can be easily derived from the forms of
the total derivatives dp&,,+1, (ii) the system performances G frequently include
(or depend on) stress components or invariants, in which case the stress sensitiv-
ities are finally required anyway, and (iii) anticipating discussion in Chapter 5,
we mention here that total, rather than explicit design derivatives of stress, are
necessary in the sensitivity analysis of explicit formulations of dynamics.

In other words, we are starting from the end, i.e. from the derivation of
update equations on dpzp4+1 = {dnz; nt1} and dnpé,41 for the already known
dnQ,,, 1 (and thus also dpF,41). The subject of this section is thus to solve the
following problem at a time instant ¢,1,

Given:

— deformation F' and constitutive state parameters z; along with their
sensitivities Oy F' and Oypz; at t =t ,

— deformation F' and its sensitivity dpF' at t = t,41,

— time-discretized constitutive equations in the interval [ty , t,+1], with
coefficients explicitly dependent on design,

compute:

— sensitivity of stress dyo and constitutive state parameters dnz; at t =

tn+1 9

with & understood as T', T or o, respectively, depending on the geometric formu-
lation. Evaluation of explicit derivatives dpiq, o o computed at unknown dyq,, 1
(and aimed at assembly of the r.h.s. arrays for its evaluation, cf. Eq. (4.3)) will
be discussed later in this section, for particular constitutive formulations.

The basis for the above general formulation is the primary problem presented
in p. 57. They both can be solved independently, however, as it will be shown,
several intermediate quantities computed while solving the primary one, can be
useful in the sensitivity computations, too.

4.2.1. Small deformation formulation

Design differentiation of the incremental constitutive equations presented in Sec-
tion 3.3.1, finally leading to determine dyop,+1 and dpz,4+1 might be considered
as a trivial task consisting in differentiation step by step of subsequent steps of
the algorithm displayed in Tables 3.1-3.3. Indeed, such a procedure would lead
to the required result, suffering, however, from numerical inefficiency.
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The reason for this is Eq. (3.111), the nonlinear equation with respect to
AeP. Differentiating it with respect to design h one obtains

fae dn(AeP) = —dniae f (4.70)

where f, Aee (the full derivative of f, including dependence of all its arguments
on AéP) is given by Eqgs. (3.117) or (3.118), depending on particular plasticity
formulation. Equation (4.70) is a linear equation for dp(AeP) and, contrary to
the primary algorithm, no iteration is required to solve it. Design differentia-
tion of equations in Table 3.2 makes thus no sense. Instead, differentiation of
Egs. (3.112) or (3.113) at frozen AgP is necessary to compute the term dpazs f
in the right-hand side of Eq. (4.70)

Before the derivation can be displayed, let us make a remark about material
constants and constitutive functions appearing in the formulations of Chapter 3.
It is assumed that material constants are explicitly design-dependent, i.e. their
design derivatives, e.g. OnE, Onv, Onm, ..., are known data in the same sense as
their primary values F, v, m, ... are. Design derivatives of dependent constants
can be easily determined from the independent ones, e.g.

6hE ahI/ 8hE QahV }

MZG[Y‘HV]’ 6hK:K[T+1—2y

(cf. Egs. (3.27)). Constitutive functions, like hardening functions x and H, are
given functions of the state variable eP, treated as material data, too. Particular
forms of the functions have not been discussed, let us only mention that, apart
of the argument eP, their values depend on a number of material constants
which are again explicitly design-dependent input data. Thus, we can write
k = k(eP;h), H = H(éP;h) and express their derivatives as

dpk = H/dhép + Onk, dpH = H’dhép + OnH ,

where the terms Ok, O H contain explicit design derivatives of the constants.
For instance, if

K(8P) = oyo + K& + (0yoo — 0yo) (1 — e ") (4.71)
where 0y, 0y , B, @, are material constants, then
Ok = Onoyo + Oni' € + (dnoyos — dnoyo) (1 - eiaép)

+ Onhae® (oyso — oyo) e e’

/! / —aeP
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Now, since f can be generally presented as a function f (Gpt1. €0 41, AeP;h),
its derivative at frozen AeP has the form

dpaer f = ajnf“ dpiaee On1 + 822]11 Oned + On frt (4.72)
where, cf. Eq. (3.110),

dniaer Gnt1 = dnGrial — AE” [On(3G) + dniaer Hjy 44 | (4.73)
and

dniaer H), (= Hy | Oneb + OnH,, ;. (4.74)

In particular, for the rate-independent constitutive model, cf. Eq. (3.112), we
have

6f / 3
9771 | ; 962 . K, h h~, ( )

and we finally obtain
dpiaer f = dniper Gt — Klyyy Oneh, — Onkinii - (4.76)
For rate-dependent models, cf. Eq. (3.113), we have
dniaee f = Atdpiaer gni
= At [(9.6)n+1 dniaee Ont1 + (9,60 )nt1 Onel + Ongny1] (4.77)
where

e for the overstress plasticity, cf. Eq. (3.59),

m oK'
g,a = 79 s g,ép = —gﬁ —, (478&)
g—kK K
ma Opk  Onp d—K
Ohg = —9g | = + —1In onm| , (4.78b)
d—K K 1 K

e for the power-law strain and strain-rate hardening viscoplasticity, cf.
Eq. (3.61),

g = = i g zp — _#
N ma_ bl € mn(ép + 60) )
Onfo o\ Onm  OnE
Ohg =g — —In{ — S T T =
€0 g1) m mE

- (1 - & > Onco +ln<1+§) 8"—"} . (4.79b)

eP+eg) ) mey go ) mn?

(4.79a)
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Table 4.2. Sensitivity algorithm for small-deformation elasto-plasticity (for the
sake of legibility, subscripts (n+1) have been omitted)

Given

strain g,, and state parameters z,, = {devo, , deva,, , e } at t, and their

design derivatives, One,, , Onz, = { On(devoy,), On(dev ay,), Oned },

strain € at t, 41 and its design derivatives dpe (dpAe = dpe — Onen),

113

material constants (F, v, ...) and their design derivatives
intermediate results of primary computations (Tables 3.1-3.3),

compute

design derivatives of state parameters d,z = { dp(dev o), dy(dev ), dpeP }

and stress dho at t,41

using the following scheme:

1. dp(devoial) = On(dev oy,) + On(2G) dev Ae + 2G dy (dev Ag)

if (plastic flow) then

— 3 .
2. dnStrial = dn(dev ogrial) — On(deva,), dnliial = 55— Strial * dhStrial

3. dnpAeP, dyH' <+— from Table 4.3

4. dpAeP = AeP (dhA—Aéfp — %) + % dn Strial

5 dh(dev 0') = dh(dev o'trial) — ah(2G) AeP — 2G dhAEP
dn(deva) = dn(devay,) + 2 dpH' AeP + 2 H' dp Ae?
dpeP = 3hég + dp AP

else (purely elastic deformation)

6. dh(dev 0') = dh(dev o'trial)7 dh(dev a) = 6h(dev Oén) , dpeP = ahég

end if

7. dpo =dn(devo) + [OnK tre + K dp(tre)] I
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Table 4.3. Computation of dn(AeP) for different elasto-plastic and elasto-
viscoplastic models

1. dnaer H = H" 0neb + onH'

2. dniaer @ —  from Eq. (4.73) (small deformations)
or Eq. (4.87) (large deformations)
or Eq. (4.93) (1-d bar formulation)

if (rate-independent plasticity)
3a. dh!AéD f = dh!Aép o — KZ’ dhég — ('911/1
else if (overstress viscoplasticity)

3b. g5,09e,0ng <+— from Eqs (4.78)
4b. dpae f = At (9.5 duiaer 7 + 920 e, + Ing)

else if (power-law hardening viscoplasticity)

3c. gs,9e,0ng <— from Eqs (4.79)
4c. dniaer f = At (9,5 dniaer 0 + g0 Onel) + Ong)

end if

5. dpAeP = —dh!AéPf/f,AéP
dnH' = dyipaer H' + H" dpAeP

The algorithm for constitutive sensitivity computations in small-deformation
elasto-plasticity is displayed in Table 4.2. This is a linear algorithm in which
design gradients of intermediate quantities appearing in the primary consti-
tutive formulation are computed, cf. Tables 3.1-3.3. Values of the quantities
themselves are frequently reused here, thus, in real sensitivity computations it
is most efficient to execute both the algorithms, primary and sensitivity, simul-
taneously, so that the latter can on hand access all results of the former. At the
stage of the update of results at the end of the step computations, this is not
really a limiting restriction, as both z and dyz are updated at the same time.

Looking at the algorithm, we can see that the finally computed stress sensi-
tivity dpop+1 conforms to the general form (4.14) employed in in Section 4.1.
Indeed, the analysis of equations in Tables 4.2-4.3 leads to the following
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. . . Io] 0
expressions for the derivatives “Zt et
n

, and Opop,41, appearing in the

82,‘ n
formulation (4.14),
8‘7'71—"-1
=C 4.80
Oe, ’ ( )
80n+1
——— = (1-9)T-(y—9 4.81
J(dev oy,) ( ) (y=d)nen, (4.81)
80’n+1
——— =497 -9 4.82
d(dev a,) J+(y=d)nen, (4.82)
ao'n 1 ~
865 = (Rnp1 +H7’{+1)7\/§n, (4.83)
Onont1 = On(2G)[(1 =) dev(Ae) — (y —¥)(n: Ae)n — (1 — v)AeP]
_ onf 2
+OonKtrea 1 I+ | AeP O H) | — ————— Zyn,
( o (@F/00u4) Vi
(4.84)
where
a K1 for rate-independent plasticity,
s (9.e0/95)nt1 for rate-dependent plasticity,
and, cf. Eqs.(4.75)3, (4.78b), and (4.79b),
(—OnKn+1 (rate-independent),
_ 8h’@nJrl _ Bh,u
—0n — \On+1—FKn —
+1 P ( +17 +1) mi
~ —In <0n+1f€n+1) %m} (overstress),
Onf _ Kn+l m
Opt1 |m———1In = -
€0 91(Ep1)) m E
P P
N <1 B _§n+1 > Ineo +1n<1_'_‘3n+1> 3}1_271}
n(en+1 +60) €0 €0 n
L (power-law).

In a similar manner we could extract from the algorithm detailed expressions
for analogous derivatives of state variables z, i.e. 8%6":1 , agiz—:”:l, Onzint1 for
z1 = deveo, zo = deva, z3 = €P. Note, however, that their explicit forms are
not necessary in the presented formulation. Implementation of the formulae
displayed in Tables 4.2—4.3 is sufficient to compute the final result without

explicit evaluation of the derivatives (4.80)—(4.84).
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Finally, let us focus our attention to computation of explicit stress derivatives
dhig,,,, On+1 O dhie,Ont1, cf. Eq. (4.15) or (4.43), necessary to evaluate the

right-hand side array 3hfrne_f_1 = dnig,,,, fr1 in the DSA system (4.3). It is easy
to see that, for design-independent geometry, the derivatives dh!qn+10'n+1 =
dhle, 1 On+1 can be evaluated with the use of the same algorithm, cf. Tables 4.2—
4.3, upon only substitution of dne, ;1 = 0 in its input data'. This is a very
advantageous feature from the point of view of implementation efficiency, as the
constitutive DSA algorithm needs to be implemented only once and used at dif-
ferent stages of sensitivity analysis with only modified input data. In the case of
shape sensitivity, we could proceed with the same way and then use Eq. (4.43),
however, the much simpler way is to directly evaluate dnyg, , 0541 from Ta-

bles 4.2-4.3, upon substitution of dnént1 = dniq,,,En+1 Where, cf. Eq. (4.42),

dnig€ij = —sym(uiyk Bkjg) OnXg . (4.85)

4.2.2. Large deformation formulation

Similarly as in the primary analysis, we can formulate DSA equations for large
deformation plasticity either as extension of the small-deformation formulation,
cf. Section 4.2.1, expressed in terms of Lagrangian tensor measures, or as a result
of design-differentiation of the primary equations based on the multiplicative
split (3.66) whose example was given in Section 3.3.2.

In the first case, the algorithm in Tables 4.2-4.3 can be simply reused, with
the quantities like o, «, €, replaced with their finite-deformation counterparts
T, A, E, respectively, expressed in the initial (reference) configuration. The
only difference, resulting from the appearance of large deformations, is the ex-
pression for dpq, +1En+1 needed as the input to the algorithm in computa-
tion of the explicit derivative dnig,,, Th+1 . For design-independent geometry it
equals zero, as in small deformations, while in the case of shape sensitivity, cf.
Eq. (4.46),

dniqEij = —sym(Fluk, ¢18,5) OnXgs . (4.86)

In the other, general case, formulation of sensitivity analysis at the constitu-
tive level requires design differentiation of the algorithm displayed in Table 3.4.
Again, the iteration loop solving Eq. (3.111) (Table 3.5) does not need to be
differentiated. Instead, Eq. (4.70) needs to be solved with the scheme displayed,
as for small deformations, in Table 4.3. The only difference, compared to the

!Note: Onen should remain unchanged, only the unknown dype at t,,1 should be set to
zero!
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small deformation formulation, is the explicit derivative dyjaze 041, given now
by, cf. Eq. (3.139)1,

dniaer Ong1 = dnOirial — {(1 + 3?; > dnent1

+ % [dh!AéPH;LH — Hy ah%] <Pn+1} AeP. (4.87)

The algorithm for constitutive sensitivity computations in large-deformation
elasto-plasticity is displayed in Table 4.4. This is a linear algorithm in which
design gradients of intermediate quantities appearing in the primary constitutive
formulation, cf. Table 3.4, are computed step-by-step. Values of the quantities
themselves are frequently reused here, thus, in real sensitivity computations
it is most efficient to execute both the algorithms, primary and sensitivity,
simultaneously, so that the latter can on hand access all results of the former.

The only required comment to the sensitivity formulae in Table 4.4 concerns
the differentiation of the trial values of spatial tensors. From design differenti-
ation of Eq. (3.123) we obtain

dnfot1 = dnFpi1 Fy + o1 dnFy = (dnFpgr — far1 dnFo)Ey Y

(4.88a)

dhjnt1 = Jnt1 tr(dnfutr Fih) - (4.88b)
Introducing the notation d(-) = [dn(-)] (-) !, we can rewrite the above as

A5 frr1 = (@dnfos1) Fty = (dnFgr — faorr daFo)F L (4.89a)

dpjni1 = tr(dpfasn) - (4.89b)

_ 1
Design differentiation of f11 = j,, * fnt1 yields after transformations

_ _ _ _1 _4 _
d<}>1fn+1 = (dhfn+1) fy;il = <]n—31 dh.fnJrl - %jnfl dhjnJrl .fn+1> f;_il
= A} for1 — 3 dpjnsr I = dev(df far1).  (4.90)

Now, design differentiation of Eq. (3.128) for an arbitrary spatial tensor ¥ and
the corresponding ¥ = J _%1# yields

dh'&trial = .fn-i—l dhq/;n fg+1 + dhfn—H '&nfg‘+1 + .fn—i—l'&n dhf?+1
= fn—i—l dh'l;bn fg+1 + dﬁfn—&—l ¢trial + "/’trial di)l.f?+1 (491)

where d§, f,,+1 can be found from Eqs. (4.90) and (4.89a).
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Table 4.4. Sensitivity algorithm for large-deformation elasto-plasticity (for the

sake of legibility, subscripts (n+1) have been omitted)

Given
deformation gradient F,, and state parameters z, = {7}, &, , e’ } at t,
and their design derivatives, OnF, , OnZn = { OnT) , OnQn , Onel },
deformation gradient F' at t,,1 and its design derivatives dy F',
material constants (E, v, ...) and their design derivatives
intermediate results of primary computations (Tables 3.4-3.5),

compute

design derivatives of state parameters dpz = {dp7*, dna, dpeP }

and stress d, T at t,41

using the following scheme:

1. d§f =dev[(dnF — fOnF,)F — cf. Egs. (4.89a), (4.90)
2. duTia = FouT) fr+ A5 f i + Toim A F T
h_trlal f7 h " fT h-fit_rla,l tI;lal hf - of. Eq (491)
dhatrial = f ahan f + dﬁf Qtgrial T Otrial d%f
if (plastic flow) then

_ = ~ = _ 3 .
3. dhstrial = dev (thf:‘ial - dhatrial)a dhatrial = 25urial Strial - dhstrial

dny = tr (dnTia — dh@rial)
dpAeP, dyH' <+— from Table 4.3
thp - L {[dh@ AeP + 2 dhAép] Strial T @Aép dhstrial —sP dha—trial}

Otrial

A

dp7* = dev(dnTia) — dns? + 51 tr(dnT,)
dper = dev(dnuria) + 25 Kdﬁ[%%) sP + H'dps?| + LT tr(dn@iosia)
dpéP = dped + dpAeP
else (purely elastic deformation)

8. dnT" =dnTii, dn® = dn@uial, dné® = Onéb
end if
9. dn7 = dev(dn7*) + I (O K)[(det F)? — 1] + I K(det F)? tr(dnF F~1)
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The algorithm presented in Table 4.4 evaluates the stress sensitivity dp 741,
whose general form was discussed in Section 4.1, cf. Eq. (4.20). Recalling dis-
cussion on this subject accompanying the small deformation formulation, cf.

Section 4.2.1, we will not present detailed equations on the derivatives 85"%,
%%fnl , and OnT,+1, appearing in Eq. (4.20), as their evaluation in this form is

not necessary.

Similarly as in the small deformation formulation, the presented algorithm
can be also employed to compute the explicit design derivative dpiq, Tl
required to determine the right-hand side array éhfffil = dnq,,,frj1 in the
DSA system of equations (4.3). In the case of design-independent geometry
we have, cf. Eq. (4.21), dhig,, Tn+1 = dniF,,; Tn+1, and thus the only change
necessary in the algorithm is just to set dy Fj,+1 = 0 in the input. In the case of
shape sensitivity, we could proceed with the same way and then use Eq. (4.53),
however, the much simpler way is to set dyF),+1 = dp F, 11 in the input to
Table 4.4, with dpiq . Fy+1 given by, cf. Eq. (4.38),

qn+1
Ayt

dnigFij = —uik drp,5 OnXp . (4.92)

4.2.3. Reduced-dimension formulations

The reduced dimension formulations for sensitivity analysis at the constitutive
level can be derived in an analogous way to the 3-D formulations. The gen-
eral idea is to differentiate step by step the algorithms for primary constitutive
computations, with special treatment of the consistency equation which at the
primary stage is nonlinear and solved in Newton iteration (3.114) or (3.158)
while at the DSA stage it is a linear equation with respect to the design deriva-
tives of the consistency parameter.

In the case of one-dimensional bar, we will not repeat details of discussion
given in the two previous sections, and we limit ourselves to mere presentation of
a tabularized step-by-step algorithm for sensitivity computations, based on the
primary equations discussed in Section 3.3.3.1. Realizing that, cf. Eq. (3.148),

dniaer On+1 = dnOtrial — ((9hE + 8hHrlL+1) AeP . (4.93)

we can write down the design-differentiated equations of Table 3.6 in the form
of a linear algorithm displayed in Table 4.5.

Computation of the explicit design derivatives dpiq, 10|41 can be per-
formed using the same algorithm, upon substitution dne|n+1 = 0 for design-
independent geometry, or, cf. Eq. (4.42),

dngjnt1 = dhiq,,,Ent1 = —U) @5 OnXg (4.94)
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Table 4.5. Sensitivity algorithm for small-deformation 1-D bar formulation (for
the sake of legibility, subscripts (n+1) and || have been omitted)

Given

strain &, , £, and state parameters z, = {0, , o, , € } att,
and their design derivatives One, , One i n ,
ath = {8h0n b ahan b ahé% }a

strain € at ¢, and its design derivatives dpe (dnAe = dne — Onen),

material constants (E, v, ...) and their design derivatives

intermediate results of primary computations (Tables 3.6-3.7),
compute

design derivatives of state parameters (including stress)
dpz = {dhO', dha, dhép} at tp41

design derivatives of transverse strain increment dyAe |

using the following scheme:

1. dnoirial = Onon + OnE Ac + EdpAc
if (plastic flow) then

2. dnGrial = dnOrial — 2 Onovy,
3. dpAeP =dyAeP, dyH' <+— from Table 4.3
4. dpAe; = —0hv(Ae — AeP) — v(dpAe — dpAcP) — édhAsp
5. dno = dnoirial — OnE AP — E dp AeP
dho = Oneyy, + dnH' AeP + H' dp, AeP
dpe® = 0P + dpAeP

else (purely elastic deformation)
6. dno = dnorial, dpno = Oha, s dpeP = 8}152

end if
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for shape sensitivity (where ’ denotes differentiation of the 1D displacement field
or the shape functions with respect to z).

In the case of plane stress formulation, the consistency parameter sought as
the unknown in the nonlinear consistency equation (3.111) is A rather than AeP.
Thus, the formulation slightly differs from the previous ones. Equation (4.70)
is now replaced by

Fadnd =—dnnf, (4.95)

a linear equation in which fy is given by Egs. (3.159)-(3.161). The partial
design derivative dpiy f is determined as follows.

Since f can be generally presented as a function f (Gpt1. 80 41, A8P; h), its
derivative at frozen A\ has the form

of

dpnf = Bonms dninGnt1
af P P of gP f
+ 8ég+1 (Oned + dniy AeP) + OAer dpiy AeP + Onf . (4.96)

In view of Eq. (3.153) (from which we have dpj, AeP = %)\ dhinGnt1) We can
rewrite Eq. (4.96) as

_ of -
dpinf = 1 dpiaGngr + _pf Onep + Onf, (4.97)
aenJrl

where ¥; is given by Eq. (3.160) and

e for rate-independent models: ?Tf = —k,,,1 and Onf = —Onk,
en—i—l
of

e for rate-dependent models: = At (ger)nr1 and Onf, gev arve given by

oey
Egs. (4.78) or (4.79), depending on a particular viscoplastic formulation.

To compute dpindp+1, let us subsequently differentiate Egs. (3.152b),
(3.154)—(3.155), (3.153), and recall Eq. (4.74):

3

dpinopi1 = o S 1P duinSn1

n
dpinsnt1 = Z7 1 (dpStrial — dninZ Snt1)
dpinZ = ZXdnnH; I+ A0,CP,

dh!)\H;H-l = 8hH7/1+1 + H;{+1(8hég + dh!,\Aép) = dpiaer H;H—l + dh!)\Aép) ,
dpnAe® = ZXdpnGnt1 .
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Gathering the above equations in one, we can determine dp\d,41 from the
scalar equation

% (&n+1 + %§E+1PZ_1§n+1 )\2H7/{+1) dh!/\&n+1 =
= 1 PZ7" [dnSerial — APSns10nC® — 261 dniner Hj 4], (4.98)

substitute it to Eq. (4.97), and finally solve Eq. (4.95) with respect to dpA.

Differentiation of remaining equations in the algorithm of Table 3.8, com-
bined with the above derivations, leads to the constitutive sensitivity algorithm
presented in Tables 4.6, 4.7. The algorithm computes design derivatives of in-
termediate variables computed during primary analysis. Values of the variables
themselves are assumed known and frequently reused in the sensitivity compu-
tations.

In full analogy to the general 3D formulations, the same algorithm can also
be employed to compute explicit design derivatives dnig, , on+1. This can be
done upon substitution dpgp1 = dplg, 1 Entl in the input data. Recalling
considerations of Section 4.2.1, this quantity equals zero in the case of design-
independent geometry and, cf. Eq. (4.42),

dhgqé‘i]’ = —sym(uiyk Bk]ﬂ) 8}1)(5 . (4.99)

in the case of shape sensitivity analysis. For the presently discussed 2D formu-
lation, indices 4, j, k run over the values 1,2 only.

Summarizing results of this section, detailed algorithms for sensitivity compu-
tations at the level of constitutive equations for a variety of incremental elasto-
plastic formulations discussed in Section 3.3 have been presented. The algo-
rithms allow to determine the explicit derivatives of stress, necessary to build
the right-hand side array of the global system of sensitivity equations (4.3) as
well as total design derivatives of stress and constitutive state variables at the
update stage, when the system (4.3) has already been solved. Two significant
features of the algorithms have been underlined. First, the algorithms may
serve in their unchanged form to both computation of explicit and total design
derivatives of stress and/or constitutive state variables — the difference con-
sists in introducing different values of input parameters (assumed sensitivity of
deformation gradient or strain). This is important from the point of view of the
implementation effort in a finite element code. Second, the nonlinear consis-
tency condition, which in the primary analysis results in a necessity of Newton
iteration, becomes linear when differentiated with respect to design parameters.
This makes the constitutive sensitivity formulation efficient, compared to the
primary formulation.
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Table 4.6. Sensitivity algorithm for small-deformation plane stress formulation

(for the sake of legibility, subscripts (n+1) have been omitted)

Given

strain €, , £, ,, and state parameters z, = {0, , o, , 2 } at ¢,

and their design derivatives, On€n , OnEin s OnZn = { OnOn , OnOly, , Onéd },

strain € at t,41 and its design derivatives doe (dnAe = dne — Oney,),

material constants (E, v, ...) and their design derivatives
intermediate results of primary computations (Tables 3.6-3.7),

compute

design derivatives of state parameters (including stress)

dpz = {dhO', dpo, dhép} at tp41
design derivatives of transverse strain increment dyAe

using the following scheme:

1. dpOtrial = OnOn + OnC® Ae + C°dpAe
if (plastic flow) then

3 . .
25 trial gtrlalP dhgtrlal

dpA, dpAeP, dyH', dpg  <«—  from Table 4.7

dpAeP = dpAPS + AP dys, dpAe® = dpAe — dp, AeP

dnlAe) = —0nv (Ae§;+AcS,) — v (dnAcS+dnAcs,)
—5(dnAef; +dnAch,)

6. dnot = Ohou, + 2 (dpA H'S + AOnH' s + AH' dps)

dho = dps + dpx

dpeP = opel + dpAeP

dnSerial = dhOrial — OnOin, dnirial =

AN S S

else (purely elastic deformation)
7. dno = dnOtrial, dnO = 0pot,,  dné® = One},

end if
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Table 4.7. Computation of dyA and related design derivatives for different
elasto-plastic and elasto-viscoplastic models

1. dpas H = H" Oped + opH'
2. dpno +— from Eq. (4.98)

if (rate-independent plasticity)

3a. V1 =1— %)\H/

4a. dh!AJF =1 dpyo — Hlahéfl — Ok
else if (overstress viscoplasticity)

3b. g5.9e,0mg <+— from Egs. (4.78)
4b. 19]_ = Atg75— — %)\(1 — Atg7ép)
5b. dh!)\f~ =M dpnro + At(gvé}') Oneb + 8hg)

else if (power-law hardening viscoplasticity)

3c. 95,9 ,0ng <— from Egs. (4.79)
4c. V1 =Atgs — %)\(1 — At gen)
5¢. dpinf = %1 dnix & + At(g.eo Oneb, + Ong)

end if

6. dp)\ = —dh!Af/f,)\

7. dpZ =2 (Z 1)+ A (2dnH'T+ 0hC°P)

8. dns=2Z " (dnSprial — dnZ<),  dnd = 2= cPdpg
9. dpAeP = %(dh)\5 + )\dh5)

dpH' = dpiaee H' + H" dyAeP
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4.3. Computational examples

In the following section, the above derivations of computational sensitivity anal-
ysis of nonlinear elasto-plastic static problem will be illustrated with computa-
tional examples. The primary and sensitivity formulations for both geometri-
cally linear and large deformation cases have been implemented in the author’s
own finite element program written in Fortran 77. Short description of the pro-
gram is given in Appendix B. Two typical structural problems will be analysed:
plane stress stretching of a rectangular strip with a circular hole (in the small
deformation range) and 3D bending of a carved beam (large deformations).

4.3.1. Stretching of a rectangular strip with a circular hole

This is a small deformation example formulated in terms of 2D plane stress
analysis. Geometry and loads are shown in Fig. 4.5. The rectangle dimensions
are 160x80 mm, the hole diameter 2r = 40 mm, and the thickness b = 1 mm.
The strip is loaded with prescribed displacement 4(t) applied uniformly on the
strip’s shorter edges. Symmetry allows to only analyse a quarter of the structure;
the finite element mesh is also shown in Fig. 4.5.

The strip is made of steel with the rate-independent, Huber—Mises elasto-
plastic material model and with linear isotropic hardening. The following ma-
terial constants are assumed: Young modulus E = 210000 MPa, Poisson ratio

A (1)
H I~
.- B -
X2
-~ |
X1 I
- P
] —>

Figure 4.5. Stretching of a rectangular strip with a circular hole: geometry
and finite element mesh
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v = 0.3, yield stress oy = 400 MPa, isotropic hardening modulus " = 200 MPa,
no kinematic hardening (H = 0).

The displacement () increases monotonically in time from 0 to 0.2 mm
(which corresponds to average strain €17 = 0.0025) at ¢t = 0.4 s. Equal time
increments At = 0.01 s were applied in the analysis. Figure 4.6 presents se-
lected snapshots of the strip deformation stages with evolution of plastic areas
indicated. Up to t = 0.1 s (& = 0.05 mm) the response is elastic. Later on,
plastic deformation develop; at ¢t = 0.26 s they already embrace the entire strip
cross-section.

The following performances have been monitored during the analysis: verti-
cal displacement at point A, uqg = —u2(A), longitudinal stress at the highest
concentration point B, op = 011(B), and the total reaction force in the cross
section A—B, F (due to symmetry, F' is only a half of the total reaction force
in the strip).

Figure 4.7 presents the primary analysis results for the above defined perfor-
mances. Stress op increases until about ¢ = 0.10 s and then, upon development
of plastic flow, it remains nearly constant at the level slightly exceeding (due
to hardening) the yield limit oy . The reaction force F' grows rapidly during
the elastic loading, then slightly slower at plastic flow, and it gets virtually
stabilized when the full strip cross-section becomes plastic (at ¢ > 0.26 s).

Figures 4.8-4.10 present sensitivity results of the three performances with
respect to six design parameters: hole radius r, strip thickness b, and the four
material constants E, v, oy and £’. The first of them, hy = 7, is the only
shape design parameter (although thickness b is a geometric parameter, too, in
2D problems it is rather treated as a material constant since the integration
over " is reduced to integration over a 2D area). To express the results in
a form independent of the design parameter dimensions, all the sensitivities in
the presented graphs have been multiplied by primary values of the correspond-
ing design parameters (in other words, the so defined ‘normalized sensitivities’
express relations between changes of the primary response and relative changes
of the design parameter values). Analytical results are compared to their finite-
difference approximations computed with the central difference scheme (2.47¢),

~ ~ ~ G(hi+Ah;) — G(hij—Ah;

dnG = {d,. G, d, g = GlhitAh) = G(hi=Ahi) (4.100)
’ ‘ 2Ah;

with finite perturbations Ah; ~ 107*h;. The choice of these perturbation

amounts was preceded by several trial-and-error tests in order to make sure

that they belong to the appropriate range (see discussion in Section 2.2.3).
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4 =0.10 s

I

0.12 s

[T

[T
|
|

|
|
|
|

LT

|
|

I

L1

0.20 s

Figure 4.6. Deformation of the strip at different time instants. Displacements
are magnified by the factor of 50. Dots denote the integration points at which

plastic flow occurs
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Figure 4.7. Transient results for the displacement w4, stress op and the reac-
tion force F'
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Figure 4.8. Transient normalized sensitivity of the displacement uy with re-
spect to six design parameters. Comparison of analytical design derivatives and

their finite-difference approximations
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As it could be expected, the response sensitivity with respect to plastic con-
stitutive parameters is initially zero until the first plastic flow occurs in the
strip (¢ ~ 0.10 s). Remarkable, in some cases even abrupt changes in the other
sensitivity graphs are visible at this time instant, too.

As it can be seen, coincidence of analytical and approximate sensitivity re-
sults is perfect. Possible errors limited to the range of line thickness have no
importance from the point of view of engineering applications. Thus, the funda-
mental verification test of correctness of the presented computational algorithm
is passed.

A visible feature of the sensitivity graphs is their poor smoothness. This refers
particularly to sensitivities of stress op (most design parameters) and reaction
F (e.g. h = v). To deeper investigate this feature, an analysis with a much finer
time discretization (At = 0.0001 s) has been run. Figure 4.11 presents transient
sensitivity graphs of selected performance design derivatives, with magnified
details on which the coarse time discretization solutions have been additionally
depicted. Remarkable step-wise patterns correspond to discontinuous ‘jumps’ of
the sensitivity solution at isolated time steps. They result from instantaneous
changes of the structural stiffness that occur when subsequent Gauss integration
points in finite elements of the model switch from elastic to inelastic behavior
or oppositely. In the coarse time discretization, each time increment includes
a large number of such discontinuous changes and thus the step-wise patterns
are not easily noticeable in the results.

This observation illustrates the discussion on discontinuity of the response
sensitivity presented in Section 2.2.4. As can be seen from Figs. 4.8-4.10, oc-
currences of such discontinuities in the computations do not affect the quality
of sensitivity solutions. It must be noted, however, that application of the sen-
sitivity results to prediction of response at finite perturbations of the design
parameters may lead to erroneous results if a perturbation is large enough to
drive the primary solution onto the opposite side of the neighbouring disconti-
nuity (especially in cases of large discontinuous jumps, like those detected for
stress sensitivity, Fig. 4.9, at transition of the point B from elastic to plastic
range, occurring between ¢ = 0.10 and 0.11).

Identical computational tests have been performed for the two viscoplastic
models discussed in Section 3.2.3. For the overstress viscoplasticity, the same
material constants have been assumed as in the rate-independent plasticity and,
additionally, m = 5 and p = 0.0005 s have been taken. For the power-law
strain and strain-rate hardening model, apart of the elastic constants taken
as in the rate-independent case, the following constants have been assumed:
g0 = 0.001833, n = 10, &g = 0.1 s~! and m = 0.1. Primary analysis results of
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Figure 4.11. Selected design sensitivities computed at fine time discretiza-
tion, At = 0.0001 s; left: transient results, right: magnified detail including
comparison with coarse time discretization results
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Figure 4.13. Transient normalized sensitivity of the stress op with respect to
six design parameters; overstress elasto-viscoplasticity. Comparison of analytical
design derivatives and their finite-difference approximations
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Figure 4.14. Transient normalized sensitivity of the stress op with respect to
six design parameters; power-law hardening elasto-viscoplasticity. Comparison
of analytical design derivatives and their finite-difference approximations
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both the tests compared to the rate-independent model results are presented in
Fig. 4.12. Selected sensitivity results (for only op) are presented in Figs. 4.13
and 4.14. Similarly as for the rate-independent elasto-plasticity, perfect coinci-
dence of analytical and finite-difference sensitivity results proves correctness of
the implemented DSA algorithm.

Let us finally make a reference to the remark formulated in the end of Sec-
tion 4.1, on the influence of accuracy of the primary solution on quality of
the sensitivity solution. There is a variety of convergence conditions upon
which the equilibrium iteration (3.176) can be terminated in practical finite
element analysis. Typically, the norm of the corrector array dq, or of the resid-
ual force array ', or their product, is checked and compared to a certain
tolerance level € > 0. In our tests, iteration was assumed converged when
(maxa=1..n, da) < € = 10~°. This condition is rather strict — in typical equi-
librium analysis, setting e between 10~2 and 10~ is usually considered sufficient.
But let us look at Fig. 4.15 where both primary and sensitivity results of the ex-
ample shown in Fig. 4.5, obtained with ¢ = 107° and € = 5-1073, are compared.
We limit ourselves to only the rate-independent material model and to tracking
only the stress op and its sensitivity with respect to the hole radius, dop/dr.
From Fig. 4.15a we can see that the primary results are the same (they obviously
are not precisely the same, but the differences do not exceed the order of mag-
nitude of the line width). However, we can see visible discrepancies between the
graphs of the sensitivity solutions for the two primary accuracy levels. Moreover,
since the finite-difference sensitivity approximates for the two accuracy levels
are virtually the same, we can conclude that the sensitivity solution obtained
with € = 5- 1072 is obviously inaccurate, at least at selected time instants.
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Figure 4.15. Stress op (a) and its transient normalized sensitivity with respect
to h =r (b), for different values of equilibrium convergence tolerance
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The conclusion suggested by the above example results is that the accuracy
level of the primary equilibrium solution, i.e. the convercence tolerance of the
Newton’s equilibrium iterations, should be set at a much higher level in analyses
that are supplemented by sensitivity calculations than in other cases. There is
no strict arithmetical rule telling how much higher should this tolerance be, but
experience of the author suggests that the decrease of the order of magnitude
of € by about 2 with respect to the value sufficient for the primary analysis accu-
racy should be desirable to achieve comparable accuracy of sensitivity analysis
results.

4.3.2. Bending of a carved beam

This is a large-deformation example with the elasto-plastic constitutive model
presented in Section 3.2.4 in its time-discrete scheme given in Section 3.3.2.
Geometry and loads are shown in Fig. 4.16. An elasto-plastic beam with a half-
cylindrical carve is supported at its free ends and bent by a stiff cylinder pressed
into the beam’s top surface at the centre of its length. No friction is assumed
at the cylinder—beam contact area. The dimensions of the beam are: w =
b =75 mm, [ = 300 mm, r = 33 mm, and the radius of the stiff cylinder is
25 mm. Deformation is driven by the cylinder’s vertical displacement ug = u(t)
monotonically increasing from 0 to 75 mm (Fig. 4.17).

The three constitutive models discussed in Section 3.2.3 are alternatively
considered: the rate-independent elasto-plasticity (RI), the overstress (Perzyna—
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Figure 4.16. Bending of a carved beam: geometry, load and support conditions,
and the finite element mesh
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Figure 4.17. Carved beam: load history

Table 4.8. Bending of a carved beam: values of material constants

plasticity model RI | 0s | PL
elastic E = 206900 MPa, v = 0.29

parameters

isotropic hardening oy = 0yo = 450 MPa, o, = 715 MPa, o = 0.002175,
parameters R =129.24 MPa, a =16.93 n =10
kinematic hardening ' — 0 MPa

parameter

viscoplastic w=0.0001 s, o =0.1s"1
parameters m=25 m =10.1

Prager) elasto-viscoplasticity (OS), and the power-law strain and strain-rate
hardening elasto-viscoplasticity (PL). In the first two cases, RI and OS, the
nonlinear ‘saturation’ form of the isotropic hardening function (4.71) is assumed.
In all the cases, kinematic hardening is assumed linear. Table 4.8 lists values of
all material constants assumed in the analysis for all the three plasticity models.

In view of symmetry, only a quarter of the beam is analysed in the finite
element model (Fig. 4.16). Tri-linear brick elements with a selectively reduced
spatial integration (the enhanced assumed strain method [88], see Section 3.4.4)
have been employed. The resultant support reaction force F' (summed up for the
entire beam) at various time instants of the deformation history is considered
the structural performance. Its evolution, determined for various values of the
time increment, is shown in Fig. 4.18. It appears from these graphs that the
time increment At = 0.01 s corresponds to convergent results (i.e. differing very
little from results at 5 times finer time discretization) for all the three models,
and this value has been used in further computations.
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(b) OS model, and (¢) PL model
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Figure 4.19 presents deformed configurations of the beam at selected load
stages, for the example of the RI model. In the case of RI and OS material
models, first plastic flow occurs at ¢ = 0.09 s, while at ¢ > 0.3 the entire beam’s
cross-section is plastic. In the case of PL, plastic flow occurs all the time.

Design sensitivity analysis of the solution has been performed along with the
primary equilibrium analysis. For each material model, material constants listed
in Table 4.8 were considered the design parameters. Besides, the carve radius r
was considered a shape design parameter in each analysis.

Figures 4.20-4.22 present graphs of sensitivity (design derivatives) of the
resultant reaction force at the beam supports vs. time, for selected design pa-
rameters for the three material models, RI, OS and PL. Lines denote analytical
solution while symbols — finite difference approximations, obtained with the cen-
tral difference scheme (4.100) and with the perturbation amount Ah; ~ 10~ 4h; .
The choice of the perturbation amounts was preceded by several trial-and-error
tests in order to make sure that they belong to the appropriate range (see dis-
cussion in Section 2.2.3). Similarly as in the small deformation example, all
the design derivatives have been normalized by multiplication by the primary
value of the design parameter, i.e. the graphs display the quantity (dF/dh)h
for both the analytical and finite-difference approximated values. It is evident
that analytical and approximate solutions are virtually equal to each other —
indeed, the relative error never exceeded 0.005 x the maximum absolute value
of sensitivity for each design parameter.

The transient sensitivity graphs are again very nonsmooth. Similarly as in the
small-deformation case, this is due to discontinuities of the structural stiffness
at transition points between elastic and plastic deformation régimes. Here, an
additional source of discontinuities appears, related to entering (or leaving) the
active contact zone by subsequent mesh nodes of the beam top surface. The
discontinuities have a form of step-wise patterns visible especially in the graphs
made for a much finer time discretization. Figure 4.23 presents examples of
such graphs, obtained for the rate-independent constitutive model for selected
design parameters. As it can be seen, the sensitivity algorithm copes very well
with the discontinuous jumps of the sensitivity solution and their presence does
not affect the solution quality (understood as compatibility between analytical
gradients and their finite-difference approximates).

It was concluded in Section 2.2.2 that one of fundamental advantages of the
presented DSA formulation is its numerical efficiency. Linear formulation of
sensitivity equations and the ability of reusing the once decomposed system
coefficient matrix make the sensitivity computations a numerically cheap add-
on to the primary analysis computations. Let us now verify this conclusion



142 Chapter 4. Sensitivity analysis of elasto-plastic static equilibrium problem

=33
I
o
B
=

15 mm

30 mm

45 mm

60 mm

75 mm

Figure 4.19. Bending of a carved beam: deformation stages



4.3. Computational examples
i 0 ; ;
< -100 | RI, h=1r
5|5 -200 | finite-diff, + -
- analytica.
> -300 f
b
>
= 400
2 500 |
(5}
wn
. -600 |
g
g -700 ‘ : : :
= 0 0.2 0.4 0.6 0.8 1
time 7 [s]
i 6 ; ;
= 5 F RI, h =V
ot finite-diff, +
Ti'f 4r analytical ]
z
ERER ]
5
7 » | ]
@
. 1t
g
5 0 ‘ ‘ ‘ ‘
= 0 0.2 0.4 0.6 0.8 1
time 7 [s]
z
% 30
< 300 |
55 250
> 200
pS
>
Z 150 F
wn
§ 100 RI, h = 0yoo T
g 50 fini e-tdiff L
ana 1Ca.
g 0 ‘ ‘ Y
= 0 0.2 0.4 0.6 0.8 1
time 7 [s]

Figure 4.20. Bending of a carved beam:
rate-independent (RI) material model

z
2 140
< 120
&5 100
> 80
=
>
2 60
‘B
= 40
[}
n
.20
g
S} 0
=]
z
2 250
= 200
Lu|§
TP 150
2
T 100
=
Z’ 50
%
. 0
£
S -50
=]
z
2 250
<
—~ 200
LL|£
Q|
.. 150
=
>
Z 100
2]
5
2 50
£
S} 0
=]
design

143

i RILh=F |

- finite-diff A
analytical ——

0 0.2 0.4 0.6 0.8 1

time 7 [s]

i RI, h =0y |
finite-diff, +

i analytica b

0.2 0.4

time

0.6

. 0.8
7 5]

RI, h = H'

finite-diff, +

‘ ,_analytica

0.2 0.4 0.6
time 7 [s]

0.8

sensitivities of reaction forces,



144

) b [kN]

dF
h

norm. sensitivity (5

) b [kN]

ar
dh

norm. sensitivity (

) b [kN]

dF
dh

norm. sensitivity (

0 T T
-100 OS,h=r
200 finite-diff,
-300 analytica.

-400
-500
-600
-700
800 s s s s
0 0.2 0.4 0.6 0.8
time 7 [

7 T T

6 OS,h=v

5 finite-diff, +

analytica.

4

3

2

1

0 s s s s

0 0.2 0.4 0.6 0.8
time 7 [
30
25
20
15
10
0S, h=r
5 finite-diff, +
0 ‘ ,_analytica
0 0.2 0.4 0.6 0.8
time 7 [

Figure 4.21. Bending of a carved beam:

overstress (OS) material model

z
2 160
< 140
;:|} 120
<|T
~ 100
2
z %
= 60
&
5} 40
n
é 20
S} 0
=]
z
2 250
= 200
Lu|§
TP 150
2
= 100
=
Z’ 50
%
. 0
£
S -50
=]
z
2 120
= 100
LL|§
T 80
2
E 60
=
g: 40
%
T 20
£
S} 0
=]
design

Chapter 4. Sensitivity analysis of elasto-plastic static equilibrium problem

i OS,h=F -
finite-diff, +

L analytica

0 02 04 06 08 1
time 7 [s]

OS, h:Uyo i

finite-diff, +
analytica

0 02 04 06 08 1
time 7 [s]

OS,h=m
finite-diff, +

‘ ,__analytica

0 02 04 06 08 1
time 7 [s]

sensitivities of reaction forces,



4.3. Computational examples

) b [kN]

dF
h

norm. sensitivity (5

) b [kN]

ar
dh

norm. sensitivity (

) b [kN]

dF
dh

norm. sensitivity (

-100
-200
-300
-400
-500
-600
-700
-800

PL,h=1r 1

finite-diff,

analytica

+

04 06
time 7 [

0.8 1

PL,h=v |

finite-diff,
analytica.

+ .

04 06
time 7 [

PL, h
finite-diff,
analytica.

=m

+

04 06
time 7 [

0.8

) h [kN]

dF
dh

norm. sensitivity (

) h [kN]

dF
dh

norm. sensitivity (

) h [kN]

dF
dh

norm. sensitivity (

120

100

80

60

40

20

160
140
120
100

145

L PL,h=F
finite-diff, +

analytica

0 02 04 06 08 1
time 7 [s]

. PL, h =¢€g
L finite-diff, +
analytical - ‘ ‘

0 0.2 0.4 0.6 0.8 1
time 7 [s]

: PL, h =&

finite-diff, + A
‘ ,_analytica

0 0.2 0.4 0.6 0.8 1

time 7 [s]

Figure 4.22. Bending of a carved beam: design sensitivities of reaction forces,

power law hardening (PL) material model



146 Chapter 4. Sensitivity analysis of elasto-plastic static equilibrium problem

0 -580
-100
>
=4
S -200
p=
% -300
g -600
2400
g -500
-600 ﬁt = 0.0002
t=0.01 o
-700 L L . : o0 BEZ00L, 7 —
0 02 04 06 08 1 0.3 0.4
time ¢ [s]
6 . . . . 0.8
At = 0.0002
At = 0.01 °
)
=1
2
+~
= A
g 0.6 ]
wn
g
—_
o
[
o
0 02 04 06 08 1 0.3 0.4
time ¢ [s]
250 . . . . 80
. 200
=
>
Z 150
= 60
£ 100
wn
£ 50
5
= 0 40 +
At = 0.0002
At = 0.01 °
-50 ! ! ! ! ) N . N N N s s N
0 02 04 06 08 1 03 0.4

time ¢ [s]

Figure 4.23. Bending of a carved beam: design sensitivities of reaction forces,
RI material model, fine time discretization (At = 0.0002 s); left: transient re-
sults, right: magnified detail including comparison with coarse time discretiza-
tion results



4.3. Computational examples 147

in practice by presenting the numerical costs of the sensitivity analysis in the
real computational example. The problem presented in this section, Fig. 4.16,
with the time range limited to 0.3 s has been taken as the primary problem.
Primary and sensitivity analysis has been separately run for 0, 1, 2, 4, 6, and 9
design parameters. Since efficiency of sensitivity computations may depend on
whether the design parameters affect geometry or only constitutive constants,
the two types of design variables were distinguished and treated separately in the
tests. Besides, the same analyses were additionally run for the small deformation
formulation.

Let us define the following coefficient of numerical cost associated with sen-
sitivity analysis,

UPrim+DSA — tPrim

O tprim * NVda ’ (4.101)
where tpyiny is the computation time of only primary analysis, tprim+psa is the
time of primary and sensitivity analysis run together, and Ny is the number of
design parameters. The coefficient ¢. measures the relative additional compu-
tational time necessary to perform sensitivity analysis, per one design variable.
For example, if the sensitivity analysis were performed with the finite differ-
ence method, cf. Eqs. (2.47), the coefficient ¢. would take the unit value for
the forward and backward difference schemes, and the value of 2 for the central
difference scheme (in both the cases, changes of N; would not affect the value
of ¢. because the difference tpyim+psa — tprim is proportional to Ny). In the
analytical DSA computations, much lower values of the cost coefficient ¢. are
expected.

Figure 4.24 presents the cost analysis results. As it can be seen, the cost
coefficient is much less than unity in all cases, and the efficiency of DSA per
one design variable increases with the number of design parameters analysed
simultaneously in one run. Shape design sensitivity has slightly higher cost
than the non-shape one, which is due to more complicated sensitivity formulae
(cf. Section 4.1), but the differences are not significant. The efficiency of DSA is
to a much more extent affected by the nonlinearity of kinematical description of
the continuum motion — we can see that DSA for large deformation problems
costs relatively more than for the geometrically linear formulation.

Obviously, the values of ¢. readable from the graphs correspond to only the
particular numerical example analysed and cannot be directly extrapolated to
other computational problems. However, the general rules (the higher N; —
the lower ¢.) and the order of magnitude of the cost coefficient will remain the
same in other problems, too. It may generally be also expected that efficiency of
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Figure 4.24. Numerical cost of sensitivity computations

DSA can be higher for larger tasks (i.e. larger sizes of the response array q). The
quality of implementation (e.g. the way of efficient reusing various intermediate
primary results at the stage of DSA computations) may again significantly affect
the overall computation time. Anyway, relatively low values of ¢. obtained in
the tests prove efficiency of DSA compared to the primary analysis.



Chapter 5

Sensitivity analysis of elasto-plastic dynamic
problem

In the previous two chapters, primary and sensitivity analysis of nonlinear static
equilibrium problems have been investigated and discussed. In this chapter, our
considerations are extended towards dynamic analysis of elasto-plastic struc-
tures. We are going to remain within the formalism of the finite element method.
Our attention is mainly focused on explicit algorithms of dynamic analysis, first
because this approach is most popular in practical engineering applications due
to its simplicity and efficiency, and also because the sensitivity analysis in the
case of explicit dynamic formulation follows a different strategy than in the
case of statics or implicit dynamics. The primary solution algorithm is briefly
introduced and the formulation of sensitivity analysis is consequently derived.
Computational examples illustrate the presented algorithm, demonstrating its
abilities and quality of the sensitivity solutions.

5.1. Primary formulation of dynamic analysis

In the dynamic analysis of deformable structures, inertia forces related to ma-
terial acceleration have to be included in the momentum balance. This results
in appearance of the additional term in the virtual work equation (3.6) which
now takes the form of the Hamilton variational equation,

T

/&:5édQ: féudQ—i—/ féud(@ﬂ)—i—/ p i dudQ, (5.1)
r Qr oQr

where p” is material density in the reference configuration C”.
Applying the finite element discretization (3.163), we approach at the follow-
ing approximation of the variational principle (5.1),

Masds 0da + F20 5qa = F 540 (5.2)

149
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with fi* and f&* given by Eqgs. (3.166)—(3.167), and

Mas = [ Guatipdo. (5.9
Qr
In view of arbitrary choice of dq,, Eq. (5.2) results in the space-discretized
system of differential equations
Magtis + fat (ag) = & (5-4)

for the unknown qg(t). For mainly algorithmic reasons, this system is frequently
completed with the damping term, yielding finally

Magsts + Caspls + fit(ap) = £, (5.5a)
or
Mg + Cq + fint(q) = F¢ (5.5b)

with the matrix C,p typically expressed as a linear function of M,z and/or
Kag .- Let us assume in further derivation of this study that C,g is proportional

to Maﬁ .
Similarly as in the static analysis, a time discretization is introduced as
to=0, t1, to, .... With the use of finite-difference formulae, one can introduce

approximate relationships between q;,, q; and q, for different time instants ¢
which allow to replace Eq. (5.5) with a series of recursive formulae in which
unknown are arrays of q; and/or their time derivatives at subsequent particular
time instants. There is a variety of ways this can be done and the solution
methods can be generally divided into two types: implicit and explicit.

5.1.1. Implicit methods

In the implicit methods, the first and second response time derivatives, ¢ and
g, at a typical time instant are extrapolated as linear functions of q at this time
instant and values of q, q and g at previous time instants,

Ant1 = U1 (Aps1s Ay Qs G G5 Gty ity -0, (5.6a)

A1 = U1 (g1 Dy G Gy D1 Q1 Gy - ) (5.6b)
An example is the Newmark scheme in which

. 1 . o (1 ..

Api1 = (A2 |:qn+1 —aq, — Atq, — (At) (5 - a) qn:| ) (5.7a)

.. ) 0\ . 0\ ..
Gt1 = X7 (Apy1 —an) + <1 - a) q, + At <1 - %> q, . (5.7b)
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with parameters o and ¢ taken for instance as

a=7, 0= (5.8)

1
5 -

=

Substituting Eqs. (5.6) to Eq. (5.5) and assuming that all arrays at ¢ < ¢,, are

known, one obtains a system of nonlinear equations on the unknown q,,, ; which

can be solved with the use of the Newton iteration scheme as, cf. Eq. (3.176),
dyn (i dyn (; i+1 j

— KW oq=fn0 qgil) = q7(11<){>1 +dq

n+1 n+1 (59)

=1+ 1

where i is the iteration counter, and the array f&™ is the dynamic counterpart

of the static residual force array ¢ = fe<t — fint,
d X in .. .
fn};nl = ffol —f t(q'nnLl > A s Zn) - quJrl - an+1 : (510)

The ‘effective’ dynamic stiffness matrix K& is defined as

dfdyn d.. d .
dyn n+l _ K An+1 An+1
= = 1+M +C 5.11
(s dq,, 4 " dg,, 4 dg,,41 o
where the matrix K, 11 is identical to that of static analysis, i.e.
dfres dfint
Kppg = ——2H = .
dqn+1 dqn+1
In particular, for the Newmark algorithm, Kzanl takes the form
dyn _ 1 0
K"+1_Kn+1+a(At)2M+aAtc' (5.12)

The scheme allows to proceed with the solution over subsequent time instants of
the assumed discretization. Stability of the solution depends on the particular
scheme type and generally is guaranteed for only sufficiently small At; however,
the Newmark scheme with the parameter values (5.8) is unconditionally stable.

Comparison of the implicit method of dynamics and statics reveals very close
relations between each other. In fact, only redefinition of the residual force
vector (5.10) and the stiffness matrix (5.11) is necessary to practically apply the
static algorithm presented in Chapter 3 to the dynamic analysis. The implicit
methods thus appear to be a simple extension of the static analysis methods
which includes inertia forces as additional external load forces in the discretized
equilibrium equation system.
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5.1.2. Explicit methods

In the explicit methods, the response q and its first time derivative q at a typical
time instant are extrapolated as linear functions of q, ¢ and g at previous time
instants,

qn—i—l = qn—i—l(qn’ qn’ dnv qp-1, qn—l s qn—l 3 .. ')v (5.13&)
qn+1 = qn—l—l(qn: qna dna An-1> qn—l 9 dn—l ) .. ) (513b)

Let us consider the following, most typical example

qn+1 = qn + At qn ’ 9dp+r1 = 9y + At qn+1 . (514)

Substituting Eqs. (5.13) to Eq. (5.5) and assuming that all arrays at ¢ < t,, are
known, one obtains a system of linear equations for the unknown q,,,;, with
the coefficient matrix M,

Mdn—i—l = fs;il - fint (qn—H » A Zn) - an—l—l : (5'15)
The scheme allows to proceed with the solution through subsequent time in-
stants of the assumed discretization. It is only conditionally stable, for usually
very small values of At. However, since it is linear, and since the matrix M can
be replaced without much loss of accuracy with its diagonal (lumped) approxi-
mate

Nnyp
A=1

the approach appears to be very efficient and is the base to most of the practical
industrial applications of dynamic analysis of structures. Solution of a linear
system of equations with a diagonal matrix is so cheap from the point of view
of computational time that it is usually not a problem if this procedure must
be repeated even thousands of times, for a large number of very small time
increments.

5.2. Sensitivity formulation of dynamic analysis

To derive the analytical formulation of sensitivity analysis for dynamic problems,
let us differentiate Eq. (5.5) with respect to design as

oM@+ Mdpg + 0,Cq+ Cdpq + dpf™t = 9, ft. (5.17)
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The design derivatives that are explicitly known from the input data have been
displayed as 0p(+) in the above equation.

Sensitivity of the mass matrix 9, M can be derived from Eq. (5.3). For design
parameters that do not affect geometry, we have

M5 = /Q O’ Binip A2, (5.18)

In the case of shape sensitivity, for the interpolation functions defined according
to the isoparametric element concept (4.26)—(4.27), we integration over Q" is
replaced with integration in the design-independent parent configuration,

ahl\/laﬁ - /Q ah(pT¢ia¢iﬁ> de: (519)
D

which, in view of Eq. (4.31), assumes finally the same form as in the case of
design-independent geometry (5.18). Sensitivity of the damping matrix 9y, C is,
according to our previous assumption, a given function of 9,M.

Depending on whether implicit or explicit approach to the primary dynamic
analysis has been utilized, the strategy of sensitivity analysis is different.

5.2.1. Implicit methods

In implicit formulations, the approach to DSA is nearly the same as in the case
of static analysis, discussed in Chapter 4. Assuming the solution at ¢t = ¢, is
known and all design derivatives of the response q and its time derivatives q,
q for t < t,, are available from the previous computations, we can differentiate
Egs. (5.6) and substitute the results to Eq. (5.17) at ¢ = t,,+1. We obtain the
following linear equation, cf. e.g. [135],

Kiyfl dnQy,41 = éhf%nl ) (5.20)
where
Onfily = ding,.,, Folt = Onfiy — Oufit
— oM dn-i—l -M 8hqn—i—l - 8hcqn-ﬁ-l -C 8hqn—f—l ) (5'21)

with dpfe, and &f%}rl computed according to the derivations of Chapter 4,
and, cf. Egs. (5.6),

8El’n,+1
oq

., 0q )
= Onq, + a.—’.‘“ OnQ,, +
n q4n

94,
94

6qn+1
a4 Onq,, +

n

ahqnfl +oey
(5.22a)

ahqn—i—l =

n—1
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Table 5.1.

Chapter 5. Sensitivity analysis of elasto-plastic dynamic problem

General scheme of computations for both the primary implicit

dynamic and the design sensitivity analysis at a typical time step [t , tp41]
(DSA modifications to the pure primary algorithm are gray-shaded). Indices
n+1 are skipped for better legibility

Input: (gn,qn,an,zn, ahqn,amqn,ahan,annzj)

i

1:=0

q:=q,

|
v

i =(q

)

,qn,qn,dn,"

)

l

loop over ‘ assemble f¥™ () and K™ () ‘
elements l
matric : -
decomposition Kdn @) 5gq = fdvn () il
and backward gt =q® +4q )
substitution
‘ check coﬁvergence I o]
lyes
A . tols . A tos o4 .
ahq—a—qd Onq,, + -, 6hq=8idhqn+ai%qn+---,
q qd, q,
loop over assemble 3hfdy“
elements

Ny backward
substitutions

loop over
elements

Output: C

l

Kdyn dhq — éhfdyn

l

. A . 09 . a. 04
dhq=8hq+£dhq, dhq=8hq+£dhq
z:z(qvqnvzn)
0z 0z 0z
dnz = 2= dnq + —— ZZ Onzn
hZ a4 hq+6qn 3hqn+aZn Onz

l

qaqquza

dnq, dud, dnd, dnz j)

primary
dynamic
analysis

sensit-
ivity
analysis

update
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A 8q 1 8(2] 1 . aCI 1 . 0q 1
P _ n+ n+ o n+ n+ cen
hqn—|-1 8qn ahqn + aqn hqn + aqn 8hq’n, + aqnil ahqnfl +
(5.22b)
In the particular case of the Newmark scheme (5.7),
s = ————— |Ouq, + Atdnd, + (A0 (1 — o) o (5.23a)
hlnp+1 = a(At)2 hq;, hd,, 9 «@ qdn| > .
Bt = — g, + (1= 2 ona, +ae (1= 2 ond (5.23D)
hlnp+1 = N hq, o hd, % hq,, - .

As it can be seen from Egs. (5.20)—(5.21), whose form is strikingly similar to
the form of Eqgs. (4.3) and (4.8), computations of sensitivity analysis follow the
same strategy as in the case of static problems, i.e. they have to be performed
step by step right after completion of the primary analysis (cf. Table 4.1). The
only additional operations needed in the case of dynamics are computation of de-
sign derivatives of the mass matrix 9,M (5.18) and, accordingly, of the damping
matrix d,C, and design-differentiation of the finite-difference time interpolation
formulae. Table 5.1 presents the scheme of computations for both the primary
dynamic and the design sensitivity analysis at a typical time step [t,, , t,41]. Dif-
ferences compared to Table 4.1 appear to be minor — the ‘statical’ algorithm
is only extended by a few additional operations.

We can also recall and repeat here all conclusions drawn for the static case
about efficiency of the sensitivity algorithm compared to that of primary analy-
sis. Again, the sensitivity equations system at each time step is linear (contrary
to the primary analysis) and it reuses the same coefficient matrix as that has just
been used in the last Newton iteration of primary analysis, which significantly
decreases the necessary computation effort.

5.2.2. Explicit methods

In the explicit methods, differentiation of Eqs. (5.13) allows to explicitly deter-
mine design derivatives of q,,, and q,,, | as functions of already known deriva-
tives from the previous computations,

. oq 0q . 0q .
d — 2 ntl g ZAnt1 ZAntl 5.24
hqn+1 8qn hd, + aqn 0hqn + aqn 8hqn + ) ( a‘)
aq dq ) oq N
dnQ,1 = ﬁ“ Ona,, + —L 0q,, + —2 O, + - (5.24b)

n 0q oq

n n
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and thus to denote them with the symbol Oy(-), reserved for explicit design
derivatives. Substitution to (5.17) leads to the following system of equations
at tn—i—l ’

M dnd,, 1 = Onfyy — dufilf — M@0 — 00C a1 — Cdnlyyy,  (5:25)

in which the right-hand side is explicitly known after completion of the primary
computations at t = ¢, 1 and the coefficient matrix is the same as in the primary
computations. If the diagonal, lumped mass matrix (5.16) has been used in the
primary computations, then it replaces the ‘full’ one in Eq. (5.25) as well, which
further implies that 0nM has to be also replaced with its lumped counterpart
oM. In such a case, Eq. (5.25) is a simple linear system of equations with
a diagonal coefficient matrix.

It can be seen that, similarly as in statics and implicit dynamics, the sensi-
tivity computations have to be performed step-by-step right after the primary
computations. The matrices 0,M and 0, C have to be determined in the same
way as in the implicit approach. The new array dhfiﬂ_u containing total de-
sign derivatives (computed at known dnq,, ), has not appeared in the static
and implicit dynamic formulations. It can be, however, explicitly determined,
following the formulae that appeared in this study as auxiliary equations dur-
ing derivation of the explicit partial derivatives dpiq . f*', in Chapter 4. For

qn+1 n+
design-independent geometry, we have, cf. Egs. (3.167) and (4.9),

dpfit = / <dh5’z'j Bijo + i dhéija> dQ, (5.26)

(with the subscripts n+1 skipped), where the total derivatives dy, éija have been
given in Section 4.1.2 for different types of geometric description, while the total
derivatives dpo;; have been given in Section 4.2 for different types of geomet-
ric description and for different constitutive models of elasto-plasticity. In the
case of shape sensitivity, for the interpolation functions defined according to
the isoparametric element concept (4.26)-(4.27), Eq. (5.26) has to be only com-
pleted with one additional term expressing design-dependence of the integration
domain, cf. Eq. (4.29),

dpfint = /T <dh5'z'j Bijo + i dhéija> dQ + [/QT Gij Bijo drpr dQ| OnXgs .
(5.27)

It must be admitted, however, that the above sensitivity formulation for
explicit dynamics does not enjoy the advantage of efficiency compared to that of
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primary analysis, which was underlined in the case of static analysis and upheld
for the implicit dynamics. The reason is that both in the primary and sensitivity
analysis we have to do with the linear systems of equations which, at a typical
time increment, has to be solved once during the primary analysis and N; times
during the sensitivity analysis. Moreover, since the system matrix is diagonal,
we cannot take advantage of the fact that the sensitivity algorithm reuses the
once decomposed matrix, saving the time needed for this operation — the time
of solution is the same during primary and the sensitivity computations. Thus,
the cost coefficient ¢. defined by Eq. (4.101) can never achieve so low values as in
the case of static analysis. Its value can be now estimated as the time necessary
to compute and assemble explicit design derivatives of the finite element arrays
(per one design parameter), expressed as a fraction of time needed to compute
the primary values of the arrays.

Since the formulae for design derivatives typically include more arithmetic
operations than the formulae for the corresponding primary quantities (take
e.g. the derivative of a product ¢ = ab, dpc = adpb + dpa b, for which the cost
ratio is 3:1), the coefficient ¢. is expected to significantly exceed unity in ex-
plicit dynamics. This would mean that, in terms of computational efficiency,
the analytical sensitivity approach in explicit dynamics may not be competitive
against even the finite-difference approach (at least in its simplest, forward- or
backward-difference version). Some hints to decrease the cost of DSA can be
sought for in efficiency of implementation. Note for instance that, although the
primary solution q,, | is necessary to solve the system (5.25), it is not needed at
the stage of computation of 8hfi,?}r1 (which consists in a time consuming element-
by-element assembly of local contributions). Thus, computation of both f;{ﬁl
and its design derivatives 8hfi,{ﬁ1 can be performed in the same loop over el-
ements which allows to avoid unnecessary repeated computation of numerous
intermediate quantities needed for primary internal forces as well as for their
sensitivities. Moreover, the local Newton iteration loops appearing in the con-
stitutive algorithms, necessary to solve the nonlinear consistency equation and
determine the final stress, are not repeated at the stage of sensitivity analysis
when the stress design derivatives are to be determined. All these observations,
when appropriately utilized during implementation, allow to decrease the com-
putational cost of sensitivity analysis, however (as it will be shown in numerical
examples in the next Section), never to the level typical of the static or implicit
dynamic analysis.

Table 5.2 presents the general scheme of computations for both the pri-
mary explicit dynamic and the design sensitivity analysis at a typical time
step [tn , tne1]. Differences between the computation strategies for explicit and
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Table 5.2. General scheme of computations for both the primary explicit dy-
namic and the design sensitivity analysis at a typical time step [t,, , t,41] (DSA
modifications to the pure primary algorithm are gray-shaded). Indices n+1 are
skipped for better legibility

Input: (qnz qn: dn7 Z’ﬂa 8hqn7 6}1(.:'717 ahqn’ th" )

l

q:q(qnaqnaqnv"')a q:q(qnvqnaqna)

. dqg dq . d d .
dnd = ~ > G, + < Ony, -, duG = < O, + - Ond, + o
dq, dq, dq, dq,
loop over assemble f™t, < C and M
elements and their design derivatives
14+ Ny inversions Mg = f¢ — fint _ Cgq
of a diagonal M d — Ot — o fint . dod— LM aé
matrix nd = On —th —Cq—Cdng—0nMq
Z:Z(qv qn7 Z’ﬂ)
loop over o2 o2
z
l t dpz= —d —= 5 il "
elements hZ a4 ng + aa. hg,, + 2. Onz
Ouput:  ( a.d.d.z, dug,dud dud duz )

implicit approaches can be easily learned from comparison of Tables 5.1 and 5.2.
In explicit dynamics, the sensitivity computations can be performed in parallel
to the primary computations. This refers to all levels of analysis, i.e. both the
global level at which the systems of equations are solved and the local level at
which constitutive computations for material points are performed and global
system arrays are assembled. Thus, for instance, the primary constitutive rou-
tines displayed in a tabularized form for different material models in Section 3.3
may be executed together with the corresponding DSA routines presented in
Section 4.2 (note that the latter extensively reuse intermediate quantities com-
puted in the former). This is not possible in the implicit algorithms where the
element-by-element loop has to be called separately at different analysis stages,
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once for assembly of the primary system arrays and once for the sensitivity
arrays.

In view of low relative efficiency of DSA in explicit dynamics, various mixed
approaches, combining simplicity of the latter with efficiency of the implicit
formulation, are proposed in the literature. An example is [121] where the sen-
sitivity analysis of the explicit dynamic problem is performed only once per
a number of time increments, and with the use of an implicit formulation, like
that discussed in the previous Section. This can remarkably decrease the nu-
merical cost, but of course makes the sensitivity solution only approximate, as
it is not directly related to the primary computation scheme. Besides, applica-
tion of the method requires assembly of the stiffness matrix K at the stage of
sensitivity analysis, which usually is not available in standard codes devoted to
explicit dynamic computations.

5.3. Computational examples

The sensitivity formulation of explicit dynamic analysis of elasto-plastic problem
will be illustrated with two examples. Both include large-deformations and
nonlinear hardening. In the first example, a thick carved beam is dynamically
bent. In the second one, dynamic compression of a thin-walled tube is simulated.

5.3.1. Bending of a carved beam

An identical carved beam as that considered in Section 4.3.2 is modelled. The
difference is the kinematical excitation: instead of prescribed displacement his-
tory @(t), the stiff excitator with cylindrical surface is now assigned an initial
velocity v(0) = 4(0) = 0, with © = 10 m/s. Mechanical properties are given in
Table 4.8 (only the rate-independent plasticity, RI, is considered). Additionally,
the material density is assumed p = 7800 kg/m® and the stiff excitator mass is
m = 137.8 kg. Gravity forces are neglected.

Explicit dynamic analysis has been performed on the time interval [0,0.01] s.
The sub-critical, constant time step length At = 0.4 - 107% s has been chosen.
The finite element mesh as in Fig. 4.16 has been applied. The structural perfor-
mances tracked during the analysis are values of vertical displacement w4, up,
uc of three characteristic points of the model surfaces, see Fig. 5.1, measured
at different time instants.

Figure 5.2 presents results of primary analysis. Displacements w4, up, uc are
displayed as functions of time. It can be read from the graphs that the excitator
hits the beam, bends it, and finally springs back with about 5 times lower
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Figure 5.1. Bending of a carved beam: geometry, load and support conditions,
and location of the points at which displacements are tracked; (A is the central
point of the excitator’s surface, B is the central point of the top beam’s surface,
initially coincident with A, and C is the central point of the carve surface)

velocity, leaving the plastically deformed beam freely vibrating with a small
amplitude. Total system’s energy remains the same which is a good verification
of correctness of the explicit dynamic formulation.

Sensitivity analysis has been performed along with the primary dynamic anal-
ysis. Four design parameters were considered: the carve radius r, the excitator’s
mass m, and the two material constants of the beam: E and oy . In Figs. 5.3-5.6,
sensitivities of the three displacements ua, up, uc with respect to the design
parameters are plotted. Results are compared to the finite difference approx-
imate sensitivities, cf. Eq. (4.100), obtained by running the primary dynamic
analysis for each design parameter perturbed by Ah; = £107%h; , respectively.
Similarly as in the statical analysis tests, several other values of perturbations
have been tested to make sure that the chosen values lie within the appropri-
ate range (see discussion in Section 2.2.3). For the sake of legibility, the finite
difference results are shown after only selected (every 500th) time increments.

The results presented suggest the following two conclusions. First, similarly
as in the case of static analysis, the analytical results perfectly coincide with
the finite difference approximates which proves correctness of the sensitivity
algorithm and its implementation.

The second conclusion refers to the nonsmooth shape of the transient sensi-
tivity solutions, visible especially in Figs. 5.4 and 5.5, where magnified details
are additionally displayed. This feature is related to high-frequency vibrations
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Figure 5.2. Bending of a carved beam: primary dynamic analysis results;
(a) displacements of the characteristic points, (b) energy balance

being an inherent feature of the structural dynamics solutions. The vibrations
have a very small amplitude which makes them practically invisible in the pri-
mary solution graphs (Fig. 5.2). However, the small amplitude appears to be
strongly design-dependent which results in the locally rough shape of the sensi-
tivity graphs in Figs. 5.3-5.6.

It was concluded in Section 5.2.2 that numerical cost of the sensitivity analysis
per one design variable compared to that of the primary analysis is in case of
explicit dynamics much higher than in the case of statics. The cost coefficient ¢,
defined by Eq. (4.101), is in this case expected to take values exceeding unity.
A number of tests has been done, based on the example discussed in this section,
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Figure 5.3. Transient normalized sensitivity of the displacements w4, upg, uc
with respect to h = hy = r. Comparison of analytical design derivatives and
their finite-difference approximations
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Figure 5.4. Transient normalized sensitivity of the displacements w4, upg, uc
with respect to h = ho = m. Comparison of analytical design derivatives and
their finite-difference approximations
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with respect to h = hy = E. Comparison of analytical design derivatives and
their finite-difference approximations
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with respect to h = hy = o,. Comparison of analytical design derivatives and
their finite-difference approximations
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Figure 5.7. Numerical cost of sensitivity computations of explicit dynamic
analysis

with different number of design parameters, and with the CPU time measured
in each case. Shape and non-shape design parameters were treated separately.
Besides, for comparison, the same problem was additionally computed with
the use of the small-deformation geometric formulation. Figure 5.7 presents
the cost analysis results. As it can be seen, the cost coefficient is higher than
unity in all cases, but never exceeds 2. This means that the computational
cost of the sensitivity analysis lies somewhere between the cost of forward-
or backward-finite-difference analysis (¢. = 1) and the central-finite-difference
analysis (¢. = 2). Comparing the results with those presented in Fig. 4.24, we
can see that the relative computational cost of sensitivity analysis in explicit
dynamics is about one order of magnitude higher than in the case of statics.
This result can be considered discouraging. However, let us recall the discussion
of Section 2.2.3, to stress that, even in this case, the analytical solution has still
advantages over the finite-difference solution, as it is, e.g., independent on the
perturbation size, and thus more reliable.

The values of the cost coefficient ¢, shown in Fig. 5.7 are obviously specific
to the very problem analysed. It can be seen that, for instance, for problems
with less complicated formulation, the coefficient takes lower values. Besides,
since any iteration loops in the primary formulations are never repeated in the
sensitivity computations (and replaced with corresponding linear equations),
one can expect that formulations containing time-consuming iterations at the
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level of assembly of the finite element arrays may exhibit lower values of the
coefficient ¢.. Stillman [120] argues that, in real complex dynamic analyses
of e.g. vehicle crashworthiness, featuring nonlinear material properties, contact
iterations, and frequent recomputations of critical time increment (only in pri-
mary analysis), the value of this coefficient may be dropped to even about 0.5.
Nevertheless, it is still significantly higher than in statics or implicit dynamics.

5.3.2. Compression of a thin-walled tube

A subject of this example is an impact energy absorbing element in the form of
a thin-walled tube with a notch near one of its ends. Figure 5.8 shows the finite
element model of its symmetric quarter. The tube (external) dimensions are:
w =40 mm, b = 60 mm, ! = 370 mm, and the wall thickness is 1.47 mm The

Figure 5.8. Compression of a thin-walled tube: geometry, load and support
conditions, and finite element mesh (symmetric quarter)
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tube is made of steel with the linear hardening elasto-plastic rate-independent
material model, with the following material constants: E = 2.10 - 10° MPa,
v = 0.3, oy = 250 MPa, " = 2000 MPa and H' = 0 MPa.

The tube is fixed at x3 = 0 and is subject to dynamic compression absorbing
kinetic energy of a mass m = 270 kg hitting the left end of the tube with the
initial velocity v3(0) = —v = —7.7778 m/s.

Explicit dynamic analysis has been performed with a sub-critical time step,
At = 0.5-107% s. A 4-node six-parameter shell finite element based on the
Reissner kinematics and valid for finite rotations has been used. Details of
the kinematical formulation (which has not been presented in this study) can
be found in [133], along with the appropriate scheme for sensitivity analysis
derived by the author for that formulation.

Deformed geometry at selected time instants is shown in Fig. 5.9. Since our
computation scheme does not feature self-contact analysis, the computations

Figure 5.9. Compression of a thin-walled tube:
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Figure 5.10. Compression of a thin-walled tube: displacement and rotation
components of point P
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Figure 5.11. Compression of a thin-walled tube: Sensitivity of displacement
and rotation components at point P with respect to the Young modulus, hy = F.
Lines: analytical results, symbols: finite-difference results
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Figure 5.12. Compression of a thin-walled tube: Sensitivity of displacement
and rotation components at point P with respect to the Poisson ratio, he = v.
Lines: analytical results, symbols: finite-difference results



5.3. Computational examples

0.009

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

sensitivity du,/doy

-0.001

0 0.5 1 15 2 25

time ¢ [ms]

0.004

0.003

0.002

0.001

-0.001

sensitivity dus/doy

-0.002

-0.003

0 0.5 1 15 2 25

0.0025

0.002

0.0015

0.001

0.0005

sensitivity dis/doy

-0.0005

time ¢ [ms]

Il
0 0.5 1 15 2 25

time ¢ [ms]

171

Figure 5.13. Compression of a thin-walled tube: Sensitivity of displacement
and rotation components at point P with respect to the yield limit, hy = oy.

Lines: analytical results,

symbols: finite-difference results
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Figure 5.14. Compression of a thin-walled tube: Sensitivity of displacement
and rotation components at point P with respect to the isotropic hardening
modulus, hy = /. Lines: analytical results, symbols: finite-difference results
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could only proceed until the first surface-to-surface contact in the developing
buckling fold occurred, i.e. up to t = 2.5-1073 s.

Components of displacement (u; and wuz) and rotation (i2) at the top of
the buckling fold (point P in Fig. 5.8) were tracked as system performances.
Figure 5.10 shows the transient primary results.

Graphs presenting transient sensitivity of the system performances with re-
spect to selected design parametrs are presented in Figs. 5.11-5.15. Again,
analytical results are compared to the finite difference approximates obtained
with the use of the central difference scheme for perturbed parameter primary
system solutions. There are no visible differences between the analytical and
finite-difference results.

The results of the latter example demonstrate flexibility of the methodol-
ogy presented in this study from the perspective of continuum formulations. It
appears that, given a very specific kinematical formulation of a structural ele-
ment (in this particular case — an advanced finite-rotation shell element with the
control of in-plane rotations and transverse shear forces), one is able to utilize
the general approach outlined in Chapters 2 and 4 to derive the appropriate
analytical sensitivity formulation compatible with the particular scheme of the
primary analysis, whether in the static or dynamic case. The quality of results
appears to be as good as in the case of continuum formulation, discussed in
detail in this study.



Chapter 6

Implementation of sensitivity algorithms in
finite element codes

In the previous chapters, computational algorithms for sensitivity analysis in
nonlinear finite element analysis, including elasto-plastic material behaviour,
have been presented. It has been underlined that the sensitivity formulations
are strictly related to the primary formulations to which they concern. Con-
sequently, the algorithms for sensitivity analysis have many common elements
with the primary analysis algorithms and it seems natural that their practical
implementation in finite element codes is tightly bound with the implementation
of the primary algorithms of nonlinear elasto-plastic analysis, whether in quasi-
static or dynamic range of applications. Most of intermediate results determined
during the primary analysis computations are then reused by the computational
schemes of sensitivity analysis. It seems thus unreasonable that the sensitivity
analysis could be practically implemented and performed ‘outside’ the finite
element code written for simulation of the primary problem.

The obvious implication of this fact is the conclusion that, in order to imple-
ment the sensitivity analysis option in an existing numerical system of nonlinear
mechanical analysis, one has to have access to its source code. This may sound
discouraging, as in the case of commercial systems of finite element analysis the
source is usually not available to regular users. The following discussion refers
to circumstances in which the sensitivity analysis is to be implemented by either
an author of the primary code or a user who controls the source code of the FE
system.

All computational examples presented in Chapters 4 and 5 have been com-
puted with the author’s own finite element code written in Fortran 77 program-
ming language. All sensitivity equations have been consequently implemented
in the code, enabling it to perform sensitivity analysis along with the primary
computations. Most of the implementation was done manually, while some part

175



176 Chapter 6. Implementation of sensitivity algorithms in finite element codes

of it — with assistance of automatic techniques discussed further in this chapter.
Let us now focus on several important practical aspects of the implementation
of DSA algorithms in a numerical code.

As it has been mentioned in Section 2.2.3, in contrast to its numerical ef-
ficiency, implementation cost of analytical sensitivity analysis is high. The
main part of the work concerns the routines that compute local contributions to
the global array of residual forces f* (Egs. (3.166)—(3.167)) and update local
state variables, i.e. constitutive routines that determine end-of-the-increment
stress 0;; and state fields z;, and geometric routines that determine the ar-
ray Iéija . The routines have to be supplemented with code that computes design
derivatives of all the quantities, according to equations given in Chapter 4.

Table 6.1. Example of a Fortran 77 code in which primary computations are
supplemented with a sensitivity analysis equations (the latter are grey-shaded).
The code computes dev Gyial, Strial and Ggia1 and their design derivatives. 2nd
rank tensors are coded in 6-element arrays according to Eq. (3.146a)

c
PRIMARY ANALYSIS
c --- compute deviatoric trial stress and relative stress
str2 = 0.
do ks=1,6
devsigtr (k) = devsig(k) + 2.*Gxdevdeps (k)
devstr(k) = devsigtr(k) - devalph(k)
str2 = str2 + devstr(k)**2
end do
c --- compute equivalent Huber-Mises stress
egstr = sqrt(1l.5%str2)

SENSITIVITY ANALYSIS

--- loop over design parameters
if (dsa) then

do kdes = 1,ndes

© --- compute design derivatives of
@ deviatoric trial stress and relative stress
dhstr2 = 0.
do ks=1,6
dhdevsigtr(k,kdes) = dhdevsig(k,kdes)
& + 2.%Gxdhdevdeps (k,kdes) + 2.*dhG(kdes)*devdeps (k)

dhdevstr (k,kdes) = dhdevsigtr(k,kdes) - dhdevalph(k,kdes)
dhstr2 = dhstr2 + devstr(k)*dhdevstr (k,kdes)

end do
© --- compute design derivatives of equivalent Huber-Mises stress
dheqgstr(kdes) = 1.5*%dhstr2/str2
end do

end if
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Table 6.1 presents an example of such implementation in a piece of existing
Fortran 77 code. The routine corresponds to steps 1-3 in Table 3.1 (computation
of dev &yial, Strial and Fyia1). It is supplemented by operations corresponding
to steps 1-2 in Table 4.2 where design derivatives of the primary quantities are
determined.

Let us focus on two important features of the implementation that can be
learned from the example.

First, the implementation is code-intrusive. Most arithmetic operations
contained in the primary computation routines have to be supplemented with
additional operations necessary to determine design derivatives of the quantities
with respect to all design parameters considered in the analysis. This means
that significant additional amount of code has to be added in virtually every
single routine of the system. Few exceptions include routines responsible for
local Newton iteration loops, like e.g. Eq. (3.114), which, as we have stressed,
are not repeated when computing the design gradients, and e.g. routines that
evaluate the flow condition or the critical time increment in dynamic analysis.

This feature, directly implying the high implementation effort and costs, is
frequently risen as an argument against implementation of sensitivity analysis
in its pure analytical form. An alternative is the semi-analytical approach, with
its relative simplicity, but also with known drawbacks discussed in Section 2.2.3.
The final decision has to be made in every case after considering actual weight
of all advantages and disadvantages.

The disadvantage mentioned above may be much less painful in the case of
codes written in higher-level object-oriented coding formalism than Fortran 77
utilized in the example. This programming approach allows for instance to
define a new, more complex class of stress-type variables, consisting of not
just the 6-element array containing the primary stress components, but also
of an array of all design derivatives of the components. It is further possible to
redefine the operations of summation, multiplication and square-rooting, in the
way that accounts for the complex structure of the class objects and includes
the well known rules of differentiation of such operation results. Having these
definitions, the grey-shaded part of code in Table 6.1 is not necessary at all —
the primary code lines, written in a more compact form as

devsigtr = devsig + 2.*G*devdeps
devstr = devsigt - devalph
eqstr = sqrt(l.5*devstr*devstr)

will yield desired results for both primary and sensitivity components. The
implementation of DSA consists, instead, in appropriate modifications of sub-
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routine and function headings, redefining all the concerned variable classes as
well as mathematic operations on their representatives in the desired manner.

The second feature of the implementation is mostly automated form of
the sensitivity formulae. In fact, all the design-differentiated equations in the
formulation of the primary analysis include a limited number of different basic
arithmetic operations and functions, whose differentiation is performed accord-
ing to certain standard formulae. There is a number of publications in which the
automatic code differentiation methods are advocated as efficient tools for the
practical implementation of sensitivity analysis in existing codes. We can men-
tion here professional systems like DAFOR [99], ADIFOR [12], ADOL-C |[33]
(see http://www.autodiff.org/Tools for more references), designed for fully auto-
mated differentiation of source codes written in Fortran or C++. The systems
act as pre-compilers given a source code that performs a sequence of certain
operations, they prepare a new code that additionally performs operations eval-
uating derivatives of output with respect to input. They do it either by blindly
differentiating the code line-by-line, as e.g. shown in Table 6.1, or, in the case
of object-oriented languages like C+-+ or Fortran 90/95, by redefining variable
classes and arithmetic operations on the variables (operator overloading). The
systems were successfully utilized to differentiate linear analysis codes consisting
of even several hundreds of thousand source lines [11].

Applicability of such techniques in nonlinear codes becomes, however, prob-
lematic. As it has been frequently underlined in this thesis, several nonlinear
equations appearing in the primary analysis, both on the global and the local
level, and solved with the Newton iteration routine, require special handling at
the stage of sensitivity analysis. The iterations are not repeated, but replaced
with a linear equation resulting from design differentiation of the primary non-
linear one. Application of automatic differentiation does not cover this special
case. Instead, the so generated code will contain iteration loops differentiated
line-by-line and supposed to be repeated at the stage of sensitivity analysis for
each design parameter. Such iterative loops should eventually converge to the
correct sensitivity solutions, but two important drawbacks depreciate the result.
First, one cannot benefit from the advantage of efficiency of sensitivity analysis
compared to the primary computation cost (which is due, among others, to the
linear formulation that allows to avoid iterations in DSA). Second, the primary
iteration is assumed converged when the primary solution fulfills a certain error
tolerance condition. The same condition will then be checked during sensitivity
computations, which poses a danger of inaccurate results because it cannot be
guaranteed that the sensitivity solution needs the same, and not higher, number
of iterations to converge within the same tolerance.
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The efficiency of computations in the case of automatically generated code
may be affected in another way, too. Let us consider for example a standard
formula for the 3 x 3 matrix determinant, coded in Fortran 77 as

det = x(1,1)*(x(2,2)*x(3,3) - x(2,3)*x(3,2))
& + x(1,2)*(x(2,3)*x(3,1) - x(2,1)*x(3,3))
& + X(lys)*(x(z,l)*X(B’Q) - X(2)2)*X(3)1))

Blind automatic differentiation leads to the following code instruction

dhdet = dhx(1,1)*(x(2,2)*x(3,3) - x(2,3)*x(3,2))

& + x(1,1)*(dhx(2,2)*x(3,3) - dhx(2,3)*x(3,2)
& + x(2,2)*dhx(3,3) - x(2,3)*dhx(3,2))
& + dhx(1,2)*(x(2,3)*x(3,1) - x(2,1)*x(3,3))
& + x(1,2)*(dhx(2,3)*x(3,1) - dhx(2,1)*x(3,3)
& + x(2,3)*dhx(3,1) - x(2,1)*dhx(3,3))
& + dhx(1,3)*(x(2,1)*x(3,2) - x(2,2)*x(3,1))
& + x(1,3)*(dhx(2,1)*x(3,2) - dhx(2,2)*x(3,1)
& + + x(2,1)*dhx(3,2) - x(2,2)*dhx(3,1))

which includes 36 floating point operations. Having saved the expressions in
parentheses in the primary part of the code we can reduce this number to
27 operations. However, having also computed elsewhere the inverse matrix,
frequently also needed in the primary analysis, we can make use of the standard
formula dj,(det X) = (det X) tr(d, X X ') coded as

dhdet = dhx(1,1)*xi(1,1) + dhx(1,2)*xi(2,1) + dhx(1,3)*xi(3,1)

& + dhx(2,1)*xi(1,2) + dhx(2,2)*xi(2,2) + dhx(2,3)*xi(3,2)
& + dhx(3,1)*xi(1,3) + dhx(3,2)*xi(2,3) + dhx(3,3)*xi(3,3)
dhdet = dhdet*det

which includes only 18 floating point operations. It is likely that an automatic
differentiation system, even equipped with some optimization tools, will not
allow this kind of time-saving simplifications, as well as many other, specific to
particular types of arithmetic routines.

All the above mentioned drawbacks do not preclude application of the auto-
matic differentiation techniques in implementation of the nonlinear sensitivity
analysis, but they make them rather difficult and inconvenient in this area.
Making practical use of the methods would at least require extensive manual
interventions of the user in order to preserve desired efficiency and accuracy
of the analytical approach. In particular, this includes manual separation of
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parts of the code that are not supposed to be automatically differentiated (e.g.
iteration loops) from the other that can be treated with the numerical tools.

A promising approach to generate sensitivity codes, rapidly developing in
the recent years, is automatic differentiation of mathematical formulations per-
formed at the symbolic level. In other words, not the source code, but math-
ematical equations are differentiated by a specialized computer program and
then coded in the form of e.g. Fortran or C subroutines. Applications of the ap-
proach are in fact much wider — it allows to generate the primary formulations
of highly complicated mathematical models and to get them automatically coded
in a computer programming language. Design-differentiation of such a symbolic
formulation appears then to be just one of numerous abilities of the mathemati-
cal toolkit and the user can treat it as a useful add-on to the automated primary
code generator.

Realization of this idea requires highly sophisticated computer programs.
An example is AceGen [70], an overlay to the commercial package Mathemat-
ica, successfully utilized to implement advanced shell [133], contact [122], and
plasticity models in FE codes. In particular, both the primary and sensitivity
formulation utilized in the example of dynamic elasto-plastic shell analysis pre-
sented in Section 5.3.2 were formulated and implemented in large part with the
use of the AceGen utility.

Since the differentiation is performed on the level of symbolic formulae, there
is no problem with special treatment iteration loops (due to which the automatic
code differentiation methods were criticized) — all the nonlinear equations can
be symbolically differentiated with respect to design parameters to yield linear
sensitivity equations. This does not mean, though, that the approach is free of
possible errors and traps.

A source of errors may be e.g. if-statements frequently introduced to the
algorithms in order to prevent e.g. possible division by zero (or by a number ‘too
close to zero’ in terms of the machine precision) or taking the square root from
a very small negative numbers. Consider an example of the standard routine to
determine eigenvalues of a symmetric 3 x 3 matrix, Table 6.2. Execution of the
steps 4—6 for b &~ 0 may result in badly determinate intermediate results and
possibly even in unexpected termination of computations (note that b appears
in the denominator of the expression for n = %), hence the conditional block
is introduced and step 3 is executed instead in such a case, directly yielding the
limit values of \; at b — 0.

Without displaying explicit symbolic formulae on design derivatives of the
eigenvalues )\;, resulting from direct differentiation of the equations given in
Table 6.2, we can notice that the symbolic algorithm for the derivatives must
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Table 6.2. Algorithm for eigenvalues \; of a symmetric 3 x 3 matrix [A4;;] [113]
(e is a small positive number depending on the machine precision)

1. 1 = Ay + Ao + Ass,
I = A1 Ao + Ao Ags + Ay Agy — A3, — A3y — AL,
13 = det[Aij]

2. b:IQ_%I%, 02—%113-4-%[1[2—]3

if |b| < e then
3. Mi=X=X\=1]
else

— _b —_ 3c
4. m=2 3, N=c

5. = %arccosn

6. \i =1l +mecos[p+2(i—1)n], i=1,23

end if

include a similar if-block whose branches are exclusively activated depending

on the value of the intermediate variable b. It is easy to verify that, setting as
h 0

0
input [A;;] = [ 010 ] (le. 1 =24 h, Iy =2h+1, [3=h, b= —L(h —1)2,
c= —2—27(h—1)3, m = %(h—l), and finally Ay = h, Ay = A3 = 1), and computing
sensitivities d)\;/dh following strictly the differentiated formulae of Table 6.2,
we obtain

for [b] > € (second branch of the if-block): the correct result {d\;/dh} =
{1,0,0Y, while

— for |b] < € (i.e. h = 1, first branch of the if-block): an incorrect result
{dxi/dn} = {3, 3, 5}

The error results from the fact that the first branch of the if-block, executed for

b =~ 0, effectively sets to 0 certain variables that appear in the second branch.

Namely, observing that b ~ 0 immediately implies m ~ 0, we can replace
the formula in step 6 taken at m = 0 with the simple formula appearing in
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step 3 in the first branch. However, the undesired side effect of such a robust
setting is that any dependence of m on design is nullified, too. The symbolic
differentiation algorithm will thus assume dm/dh = 0 in the first branch of the
if-block which is obviously not true even at m = 0.

There are two ways of making the symbolic differentiation yield correct sensi-
tivity equations in such circumstances. One is, again, manual intervention of the
user whenever necessary, which is very inconvenient and not always allowed by
the system. Another one is formulating the primary model equations in a way
that does not contain such differentiation traps as the one described above. Note
that errors of this type may appear not only in implementation of sensitivity
analysis. Automatic symbolic derivation of the tangent stiffness matrix will also
be prone to errors resulting from such traps in the algorithm formulation. In
other words, a differentiation-oriented way of thinking is required in formulation
of primary algorithms that are supposed to be automatically differentiated.



Chapter 7

Concluding remarks

The objective of this dissertation was to present the numerical methods of de-
sign sensitivity analysis of nonlinear mechanical systems with particular refer-
ence to elasto-plastic and elasto-viscoplastic structural response. The notions
of design parameters and system performances have been introduced and the
main problem of the thesis, i.e. determination of the performance gradients with
respect to design, has been formulated. Following discussion on different com-
binations of continuum and discrete formulations, attention has been mainly
focused on design-differentiation of discrete equations of nonlinear continuum
mechanics under both statical and dynamical conditions. Direct differentiation
method has been chosen as the only appropriate approach in the case of the
path-dependent problem of mechanics.

The primary formulation of a nonlinear problem of continuum statics in terms
of space- and time-discretized fields has been presented, including time-discrete
constitutive equations of elasto-plasticity for both small and large deformations
as well as for both rate-independent and rate-dependent plastic flow equations.
The formulation, assuming the form of a series of nonlinear systems of algebraic
equations associated with subsequent discrete time instants, has been differen-
tiated with respect to design parameters, including both constitutive and shape
parameters. Equations for design gradients of the solution have thus been formu-
lated, in the form of linear algebraic equation systems. Several specific issues re-
lated to the formulation have been discussed, including the non-differentiability
of the elasto-plastic response with respect to input parameters, the importance
of consistent tangent operators in both the primary and sensitivity formulations,
computational efficiency of sensitivity analysis, and relations between analyt-
ical, semi-analytical and finite difference approaches to sensitivity evaluation.
Extensions towards dynamic analysis of nonlinear elasto-plastic systems have
been then discussed, with appropriate derivations of sensitivity analysis for-
mulations. The derived algorithms have been illustrated with computational
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examples demonstrating the wide area of applications and high quality of re-
sults.

The presented formulations have been successfully implemented in an au-
thor’s own finite element code. Their closed and complete form allows to easily
introduce them into any other finite element system whose source code is avail-
able. The conclusions drawn from the presented material can be summarized
as follows.

1. The formulation of sensitivity analysis derived by analytical differentiation
of discrete primary equations of statics appears to be a very efficient tool
to determine design gradients of numerical equilibrium response. Kven in
highly nonlinear formulations, including elasto-plastic rate-independent and
rate-dependent constitutive equations and the most general case of large
deformations, the sensitivity problem is linear (at least at a single time step)
and, which is particularly advantageous, its solution consists in reusing the
once decomposed tangent stiffness coefficient matrix in back-substitution
against new right-hand side vectors specific to sensitivity analysis. This
makes the solution time of the sensitivity problem (per one design parameter)
a small fraction of the primary solution time, and the sensitivity computation
algorithm — a numerically cheap add-on to the finite element system of
nonlinear analysis of structures. The necessary condition is, however, that
the exact consistent tangent matrix is used in the iteration scheme of the
primary analysis.

2. The above conclusion regarding efficiency does not refer to sensitivity formu-
lations derived from the continuum differential or variational equations and
then discretized independently of the primary problem. Other advantages of
the latter approach, like possible gains in accuracy, have to be kept in mind
and appreciated, but they do not seem to make the approach competitive to
the one presented in detail in the thesis.

3. In the case of path-dependent problems, like those including elasto-plastic
material behaviour, the only efficient method of sensitivity analysis is the di-
rect differentiation method (DDM). Numerous advantages of the alternative
adjoint system method (ASM), advocated in sensitivity analysis of linear or
nonlinear conservative systems, cannot be enjoyed in this case.

4. Design parameters that affect the initial geometry of the analysed system
make the sensitivity formulation somewhat more complicated but, upon in-
troduction of the reference volume concept and association of the reference



Chapter 7. Concluding remarks 185

volume with the parent configuration of the isoparametric finite element,
they can be actually treated in the same manner as the other design param-
eters, affecting e.g. only material properties. This allows to formulate the
problem of shape and non-shape sensitivity in a unified manner.

5. Possible non-differentiability of elasto-plastic response with respect to design
parameters make the sensitivity solution discontinuous, and thus locally un-
defined in terms of a standard derivative. It has been demonstrated that this
problem does not preclude practical application of the presented formulation
and does not affect the quality of the sensitivity results.

6. Accuracy of the sensitivity solution depends on accuracy of the primary so-
lution. It is essential that, in view of the following sensitivity computations,
the error tolerance in primary equilibrium iterations is set at a more de-
manding level than that considered satisfactory from the point of view of
required primary solution accuracy.

7. The general formalism of the space- and time-discrete sensitivity analysis
can be easily extended towards dynamic analysis, both in the implicit and
explicit approaches. In the latter case, however, the relative computational
cost of sensitivity analysis compared to primary analysis is much higher than
in the static or implicit dynamic analysis. The main reason is high efficiency
of the primary formulation itself, namely its linearity and the diagonal form
of the coefficient matrix in the equation system to be solved. This does not
allow any remarkable time-saving simplifications in the sensitivity analysis
formulation.

8. Practical implementation of the presented algorithms in a finite element
program requires access to the source code and the implementation cost is
high. In some cases, the implementation of semi-analytical or even finite-
difference methods may be considered a reasonable alternative, even in view
of numerous drawbacks of both the methods. Automatic code generation
tools may also be utilized in sensitivity implementation, however, the issue
of computational efficiency and reliability of the so generated codes must be
taken into consideration.

The application area of the presented algorithms is wide. The main part of
it are gradient optimization methods. Efficient gradient-based optimization re-
quires information on both the system performance measures and their sensitiv-
ities with respect to design parameters [37|. Structural analysis codes capable
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of evaluating all of them are thus desirable elements of structural optimiza-
tion procedures and numerical systems. The term ‘optimization’ includes in
particular the rapidly gaining the interest of engineers issue of topology opti-
mization which, despite of its inherently discontinuous character, can be though
expressed and effectively solved with the methods of continuous gradient opti-
mization [83, 84]. The reliability-based structural optimization [69] can also be
mentioned as one more promising area in this branch. Another branch of appli-
cations are system identification methods. They are conceptually very similar
to gradient optimization methods and the design sensitivity of the response may
play the crucial role in their successful applications. Further, methods of error
analysis, parametric ‘what-if’ studies, and stochastic analysis of the system re-
sponse, can be also considered challenging areas of applications of the sensitivity
analysis methods.

The shortly summarized above areas of application prove that the methods
of sensitivity analysis still remain in the focus of interest of researchers dealing
with computational mechanics. Nowadays, it is actually difficult to imagine that
a modern, contemporary computer system of nonlinear analysis in mechanical
engineering could not provide reliable tools to assess the response sensitivity
with respect to wide variety of input parameters.

In the case of linear systems, the methods seem to be well documented in the
literature, cf. the review paper |56]. In nonlinear mechanical problems there is
still a lot to be done. Analytical derivations of sensitivity in advanced con-
stitutive models of nonlinear, especially multiphase materials, as well as in
highly complex formalisms of shell and beam kinematics and associated finite
element formulations are still desired. Sensitivity formulations in structural vi-
bration analysis requiring design differentiation of the generalized eigenproblem
of a large system stiffness matrix, as well as the sensitivity analysis of the limit
load factor in structural stability problem, have not been mentioned in this
thesis and are also a subject of extensive research.

Application of shape sensitivity techniques in finite element analysis requires,
as it was mentioned in Section 4.1.2, implementation of sensitivity algorithms
in mesh generators, so that gradients of nodal coordinates with respect to geo-
metric parameters of the meshed body are available as their output along with
the coordinates themselves. This is another area of needed research in the field
of computational mechanics.

Implementation of DSA algorithms in existing finite element codes is a tedious
task, especially if a code is written in a low-level programming language like
Fortran 77 and was not originally meant to provide, among others, results of
sensitivity analysis. This is why the code developers are frequently discouraged
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with the amount of labour and choose less reliable semi-analytical or even finite-
difference formulations. For codes written in object-oriented languages the task
of sensitivity implementation is much easier.

The author believes that a progress in practical implementations of analyti-
cal algorithms of sensitivity can be made along with popularization of methods
of symbolic programming mentioned in Chapter 6. Their advantages consist
in straightforward formulation of mathematical models and in moving the bur-
den of symbolic transformation of formulae and coding them in a programming
language from the researcher’s mind onto the computer. The idea of formula-
tion of primary equations in terms of the symbolic formulae and then having
the numerical code automatically generated allows to implement the sensitivity
analysis in an easy, natural way, by simply extending the set of symbolic for-
mulae with their automatically differentiated counterparts and then generating
a code that includes both primary and sensitivity analysis. Bearing in mind
all possible sources of errors in such an approach (cf. examples in Chapter 6),
we can though foresee that an increasing number of numerical procedures for
new geometric and constitutive formulations in structural mechanics will be
generated with the use of such tools. One can thus hope that analytical sen-
sitivity formulations, so natural and straightforward in this approach, will also
accompany the so derived algorithms. Besides, along with development of the
symbolic programming tools, we can expect increase of efficiency of the so gen-
erated codes, which is the issue of critical importance from the point of view of
computational applications.






Appendix A

Algorithmic constitutive tangent operators

This appendix contains detailed derivation of algorithmic constitutive tangent
operators for elasto-plastic models discussed in Chapter 3, consistent with the
time integration schemes applied to corresponding rate-type constitutive equa-
tions.

A.1. Small deformation formulation

The algorithmic constitutive tangent operator C for the incremental constitutive
model presented in Section 3.3.1 can be defined as, cf. Eq. (3.94),

_ d0'n+1 i d0'n+1
dent1 dAe

C (A1)

(for the sake of legibility the index n+1 will be skipped in further derivation
in this section). Subsequent differentiation of equations displayed in Table 3.1,
together with the consistency condition (3.111) at ¢,41, with respect to Ae,
leads to the following formulae,

dSirial = d(dev oypa) = 2G dev(dAe) = 2G (3 — %I ® I) dAe, (A.2)
3

do rial = Z=  Stria :d rial » A.
Otrial 25 erial Strial Strial ( 3)
do = dOtial + 7,60 dAEP (A.4)

of . of . _

= = AeP . A.

0 8&d0+8Aépd 3 (A.5)

The last two of them can be easily replaced by
f,a doirial + J;,Aép dAeP? =0 (A.6)

189



190 Appendix A. Algorithmic constitutive tangent operators
. ;P _ of af - . .
with faer = 535 + 55 0.aer given in Table 3.2 and

f 0 f _J1 for rate-independent plasticity,
7 ~ | Atgs for viscoplasticity.

o
Equation (A.6) can also be rewritten as

_ Yo 3Gf c
dAeP = — dGipial , = —— AT
3G trial Y f7AéP ( )
Differentiating the elasto-plastic stress deviator, expressed as
3G AeP
dev o = dev oial — 9 Strial 9=
O'trial
we obtain
3G AeP doiy
d(dev o) = d(dev orgyial) — = (Aép dsirial + AAEP St — ﬂ 3tria1>
Otrial Otrial

which, upon subsequent substitution of Egs. (A.7), (A.3) and (A.2), leads to

d7 ria
d(devea) = (1 —9) dspial — (v — 0) 8l g )

Otrial
=[(1-9)T - (y—19)n®n]|:dsyia
=2G[(1-9)(T—3I®I)—(y—V¥)n®n]:dAe.

Considering now also the elastic spherical part of stress, o = deveo + K(tre) I,
we finally come at

do =C:dAe
with
C=KI®I+2G(1-9)(T-iI®I)-2G(v-Y)nen. (A.8)

A.2. Large deformation formulation

To derive the tensor ¢, and particularly the plastic corrector part ¢P defined
by Eq. (3.144), it is necessary to compute d°s? 41 and to express it as a linear
function of de,; (for the sake of legibility the index n+1 will be skipped in
further derivation in this section). Differentiating Eq. (3.143b) we obtain

dosp = d19 Strial + 19 dostrial , (A9)
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where

9 = SotrialAép

Otrial

)

do = ¥ <d§0trial + d(Aép) . dUtrial) .

Ptrial Aep Otrial

The scalar time derivatives dgyial, d(AéP) and dayy, appearing in the above
formula are not independent. Time differentiation of the flow condition

- H'
f(57 épa Aép) =0, 0 = Otrial — | 1+55 SotrialAép )
3G
leads to the following relation,
H' Ptri 1f~5
d(AeP) = dG a1 — <1+—> AePdpy 1] , = =27
( ) Dtrial |: tria) 3G Ptria Y f,AéP

where f) Aep = &ZJ;, + g—g o e given in Table 3.5 and, similarly as for small
deformations,

;o 0 f 1 for rate-independent plasticity,

fo= 95 | Atgs for viscoplasticity.

Equation (A.9) takes thus the form

H Ay — ¥ doy
s =v [<1 -7 (1+_>> Pirol Strial T 1= _Umal Strial + d°Strial |
3G Ptrial % Otrial
(A.10)

in which d@gyial, dotial and d°sga1 have to be determined.
Let us introduce the notations

c=Gb°—a=71"—q, S=F'cF'=qgcr!' - A4,

and, analogously,

2
3

= —* = = —* = -2 T
S=7"-a=J S, Strial = Tirial — Ctrial = J 3FSnF )

so that Yirial = tT Sirial and Stpia] = dev Gpijal. We can now write

_ _ 3 _ _
dSOtrial =tr (dgtrial) ) datrial = 5'— dev Strial - dev (dgtrial) .
trial
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Introducing the notation dL = de" = dF F~! and recalling de = %(dL-l—dLT),
cf. Egs. (3.98¢), and employing the following relations (in which symmetry of
Sirial has been utilized),

ASiriat = AFS,F' + FS,dF" = dL Syia1 + S AL,
_2 _ _ _
dftrial =J 3dgtrial - % tr(de) Strial = deV(dL) Strial T Strial deV(dLT) ,

d‘Ptrial = trdSirial = 2 tr[itrial dev(de)] =2 tr[dev(itrial) de]

= 2[dev(Siial) : d€] = 2 (Sgyial : de€)
dstrial - dev(ditrial) — détrial - %I (tI‘ ditrial)

= dev(dL) Gyrial + Strial dev(dL™) — 21 [dev(Gyiar) : de],
da’trial = 52— (Strial . dstrial)

20—tr1a1

= {deV gtrlal) [dev(dL) Strial T Strial deV(dLT>]}

2o—trlal
= gy (2[dev(Siviar) dev(Siviar) — § 1 tr{dev(Giriar) dev(Gisia)]] : de
+3 (tr gtl"lal) dev(gtrlal : dﬁ}
= Umal [3 dev(strlal) + Ptrial stnal] :de s

d°Srial = dSgrial — AL Srial — Strial dL”’
= dev(dL) Girial — AL dev(Girial) + Sirial dev(dLT) — dev(Giiar) ALT
— %I [dev(Sirial) : de]
2 [(tr Gnar) dev(de) — tr(de) dev(Guia) — T (dev(Sinat) : de)]
= % [Ptrial dev(de) — tr(de) Sirial — I (Strial : d€)]
2
3

[Sptrial (j - %I ® I) — Strial @I — I ® strial] tde,

dSDtrial Strial = 2 (Strial : dé) Strial = 2 [Strial ® Strial] : dG,
1

6trlal

{ [3 dev(sgrial) + Ptrial Strial] : dé} Strial
[3Str1al & dev(stna]) + Qtrial Strial @ Strlal] :de s

datrial Strial =
- Ut al

we can rewrite Eq. (A.10) in the form (3.144)3,
d°sP = ¢P : de,
where

P=C(T-3I0I)+Co(neI+I®n)+Csn®n+Cindev(n?),
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and
_ Strial \/§ Strial
n = =4/,
||3trial|| 2 Otrial
Cl = % Ptrial 9
Cy = — % \/g Ptrial Aépv
CS = %5’trialAép []- -7 <1+%>} + %(7 - 19) Ptrial

C’4 - 2(7 - Q9) Otrial -

In the case of linear hardening rate-independent plasticity (x'=const and
H' = const), we have

1

= —i/ -
1 + 3G + Ptrial

v

and the operator ¢ assumes the form derived in [111].

A.3. Plane stress formulation

For small-deformation plane stress elasto-plasticity, the algorithmic tangent op-
erator consistent with the time integration scheme, is defined with the formula

do,i1  dopg

C = =
de,,+1 dAe

(A.11)

in which the particular quantities, unlike in Eq. (3.94), are understood as
reduced-dimension arrays of size 3 in the vector-matrix notation introduced
in Section 3.3.3. Differentiation of incremental equations presented in Sec-
tion 3.3.3.2 leads to the following formulae (in which the index n+1 has been
skipped for the sake of legibility),

dqtrial = C° dAE, (A.12)
dA
dSrial = dZS+ Zds = ~ (Z —I)s+ Zdg, (A.13)
3
de = —<TPd A.14
7 5o Pds, (A.14)
0 = Y1 do + 95 dA, (A.15)
d
do = dg—i—dazﬁdg—i—(ﬁ—l)%g, (A.16)
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with C°¢ defined with Eq. (3.151), Z, ¥ defined with Eq. (3.155), and ¥, 92
— with Egs. (3.160)-(3.161). Equations (A.14) and (A.15) can easily be trans-
formed to

dA . 3, 3 (3 U
B Pd = = [ — % 1 Al

which, when substituted to Eqgs. (A.13) and (A.16), yields after transformations

dStrial = Z1 ds, do =Z>dg, (A.18)
with

Zy = 91+ AC°P — (9 — 1) (Ps)T — 4\ C° (Pg) (P<) T, (A.19)

Zo = 91— ~y(0 — 1)s (Pg)™. (A.20)

There are many ways of further transformation of the above formulae that lead
to different equivalent forms of the algorithmic tangent operator C. Let us
continue with the observation that

A Al
Zy=737:, Z3=1+_-CP+Z —C°(Ps)(Ps)T,
v U m
where
=52 (9-1) — —.
n=350(9-1) 5

This allows to represent dgiya as

dS¢rial = Z3 do.

Consequently,
do do  dSgpial 1 “1ry \—1
C = = =7, C°=(CZ
dAe d@trial dAe 3 ( 3)
LA 1 w\1!
= |Coh+ S <P + — (P<) (P¢) >] (A.21)
% Y1
where
1 1 —v 0
Ccel = v L 0
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In particular, for the case of rate-independent elasto-plasticity, we have

462N 252 (¥ 2
= Hl = — _— ]_ 19 = 1 - - A /.
71 9! (K’ + ) 3 (191 > 3 1 3 K

Upon this assumption, the form (A.21) appears to be equivalent to the form
derived in [116],

— — -1

_ 5P (=P == [ ]
IpE v - 9 :
' PEPS+ 71 §

C =

[

which can be easily verified after some transformations.






Appendix B

Short description of the numerical program

The numerical program used in the computational examples presented in the
dissertation is a finite element analysis code named NS written in its most part
by the author at the Department of Computational Science of the Institute of
Fundamental Technological Research, PAS. The code is written in the Fortran 77
language.

The fundamental features of the program are listed below.

e Types of analysis: statics and explicit dynamics with geometrical and ma-
terial nonlinearities, including optional sensitivity analysis with additional
possibility of verification of some sensitivity results with the finite difference
method.

e Material models:

— isotropic and orthotropic elasticity (including hyperelasticity with a few
forms of the strain energy function),

— small- and large-deformation elasto-plasticity with Huber—Mises yield cri-
terion and Jo flow rule, with both kinematic and isotropic hardening

— small- and large-deformation elasto-viscoplasticity with the overtress and
the power-law strain/strain-rate hardening rules.

e Element types:

— 2D tetragonal element with bi-linear and bi-quadratic shape functions and
triangular element with linear and quadratic shape functions; for plane
stress, plane strain and axisymmetric analysis

— 3D brick element with tri-linear shape functions, optionally with reduced
or selectively reduced (EAS) integration; 3D wedge and tetrahedral el-
ements with linear shape functions; special elements like e.g. tetragon-
based pyramids (the latter were not used in this study).
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— 2D and 3D no-friction large-slip contact elements

— large rotation 4-node shell element with six parameters at a node

e Load types: precribed nodal forces or displacements (both given as time
functions), in dynamical analysis also prescribed initial nodal velocities.

e Boundary conditions: standard blocked or prescribed (as a time function)
displacement degrees of freedom; linear equation multi-point constraints.

e Equations system solver: Gauss elimination, sky-line storage of the symmetric
system matrix.
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Streszczenie i elementy oryginalne rozprawy

Niniejsza rozprawa jest poswiecona metodom analizy wrazliwosci parametrycz-
nej w obliczeniach numerycznych zagadnienn sprezysto-plastycznych. Okresle-
nie gradientéw wrazliwosci dla rozwiazan obejmujacych tak szeroki wachlarz
zjawisk nieliniowych, zarowno geometrycznych jak materialowych, stanowi wy-
zwanie dla badaczy, a jednoczesnie odpowiedZ na potrzeby przemystu, gdzie
zjawiska sprezysto-plastyczne w materiatach odgrywaja istotna role z punktu
widzenia bezpieczenstwa, kosztow i funkcjonalnosci produktu. W rozprawie
przedstawione sa przede wszystkim analityczne metody wrazliwosci, w ktorych
gradienty wyznaczane sg Scisle, w przeciwienistwie do metod opierajgcych sie na
przyblizeniach metody réznic skoniczonych dla matych perturbacji parametrow
projektowych.

Rozwazania przedstawione w pracy dotycza analizy wrazliwosci pierwszego
rzedu w geometrycznie liniowych oraz nieliniowych zagadnieniach oblicze-
niowych izotermicznej sprezysto-plastycznosci metali, miedzy innymi réwniez
z uwzglednieniem zjawisk lepkoplastycznych. Tres¢ rozprawy jest w duzej mie-
rze kompilacja wynikéw oryginalnych badan naukowych autora, prowadzonych
w latach 19942006 w Instytucie Podstawowych Probleméw Techniki PAN, przy
wspoétpracy z kolegami z Zakladu Metod Komputerowych, i opublikowanych
w pracach [64, 65, 67, 68, 71-73, 132, 133]. Trzon rozprawy stanowia rozwaza-
nia na temat ukladow statycznych, choé¢ dyskusja obejmuje rowniez rozszerzenia
przedstawionych sformulowan w kierunku obliczern dynamicznych. Problemy
wrazliwosci w zagadnieniach np. statecznosci lub analizy drgan, w ktérych nie-
zbedne jest wyznaczanie wartosci i wektorow wtasnych uktadu dyskretnego, nie
sg w pracy podejmowane.

Wszystkie zagadnienia brzegowo-poczatkowe rozwazane w rozprawie sa dys-
kutowane w kontekscie przyblizonych sformutowai dyskretnych opartych na me-
todzie elementoéw skonczonych (MES). Ograniczenie to nie umniejsza ogdlnego
charakteru rozwazan i wnioskéw, przynajmniej dla przypadku wrazliwoéci na
parametry materiatlowe i wymiarowe. W zagadnieniach wrazliwosci ksztattu,
kluczowe pojecie niezaleznej od parametréw projektowych geometrycznej konfi-
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guracji bazowej jest w niniejszej pracy utozsamione z konfiguracja bazowa izo-
parametrycznego elementu skoniczonego — stad dyskusja tej grupy zagadnienn
ogranicza sie do sformutowan dyskretnych w ujeciu MES.

Rozdzial 1 zawiera wprowadzenie do tematu, z oméwieniem historii i obec-
nego stanu badan w dziedzinie wrazliwosci parametrycznej zagadnien sprezysto-
plastycznych.

Rozdzial 2 prezentuje ogolna idee analizy wrazliwosci nieliniowych uktadow
mechanicznych. Zostalo tu przedstawione ogolne sformutowanie problemu pod-
stawowego, zarowno w ujeciu ciagtym jak tez w dyskretnym, oraz wprowadzone
zostaty pojecia parametréw projektowych i funkcjonatéow stanu. Rozrdzniono
nastepnie dwa fundamentalne podejscia do analizy wrazliwosci: ciagte i dys-
kretne, z dyskusja na temat ich zalet i wad i wskazaniem pewnych metod po-
srednich. W dalszej czedci rozprawy rozwazano dokladniej jedynie podejscie
dyskretne, z dwiema alternatywnymi strategiami rozwigzania: metoda bezpo-
§redniego rozniczkowania (DDM) i metoda ukladu sprzezonego (ASM). Prze-
dyskutowano w sposob krytyczny podejécia: analityczne, potanalityczne oraz
réznic skoniczonych, do wyznaczania gradientéw wrazliwosciowych. Na koniec
podniesiona zostata kwestia roézniczkowalnosci rozwiazan sprezysto-plastycznych
wzgledem parametrow projektowych i mozliwych w konsekwencji tego faktu nie-
cigglosci rozwiazan wrazliwo$ciowych.

Poprawne sformutowanie zagadnienia wrazliwosci wymaga dogtebnego zrozu-
mienia sformutowania zagadnienia podstawowego. Rozdzial 3 przedstawia za-
tem szczegdtowo zagadnienie statycznej deformacji ciala sprezysto-plastycznego,
a w szcezegolnoscei sformutowania konstytutywne dla matych i duzych deformacji
w ujeciu predko$ciowym i przyrostowym, oraz sformutowanie dyskretne glo-
balnych réwnan réwnowagi w ujeciu MES. Wprawdzie material ten niemal nie
zawiera oryginalnych wynikoéw autora, jednak jego umieszczenie w pracy jest
niezbedne, gdyz nastepujace w kolejnym rozdziale wyprowadzenie réwnan wraz-
liwodci zawiera liczne odwolania do notacji i szczegdtéow réwnar zagadnienia
podstawowego.

W Rozdziale 4 przedstawiono wyprowadzenie sformutowania wrazliwosci dla
tak zdefiniowanego problemu podstawowego. Jest to zasadnicza, oryginalna
czes¢ rozprawy. Podniesione zostaly w szczegolnosci aspekty obliczeniowe ana-
lizy wrazliwodci, miedzy innymi kluczowa rola algorytmicznej, konsystentnej
macierzy stycznej. Omodwiono szczegdlowo kwestie wrazliwosci na parame-
try ksztaltu. Pokazano, ze nie ma istotnych sprzecznosci miedzy sformutowa-
niami dla parametréw wptywajacych i niewptywajacych na poczatkows geo-
metrie uktadu (podejicie zunifikowane). Nastepnie, zrézniczkowano réwnania
pojawiajace sie w procedurach konstytutywnych sprezysto-plastycznosci wzgle-
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dem zmiennych wejsciowych (zaleznych od parametrow projektowych) w celu
otrzymania catkowitych i czastkowych pochodnych projektowych zmiennych
stanu, niezbednych w globalnym sformutowaniu analizy wrazliwosci. Podkre-
§lono wniosek o liniowym (przynajmniej na kroku obliczeniowym) charakterze
rozwiazania wrazliwosciowego, nawet w przypadku silnych nieliniowoéci w row-
naniach konsystencji modelu konstytutywnego. Wyprowadzone sformutowania
przedstawiono w postaci zamknietych algorytméw obliczeniowych, gotowych do
implementacji od reki w programie komputerowym. Przyklady obliczeniowe, za-
mieszczone na koricu rozdziatu, ilustruja zaprezentowane algorytmy i inspiruja
dyskusje na temat szczegétowych kwestii oméwionych w rozdziale.

Rozdziat 5 obejmuje rozszerzenie rozwazan z poprzednich rozdziatéw na przy-
padek analizy dynamicznej uktadéw sprezysto-plastycznych. Przedstawiono
rownania analizy podstawowej oraz wyprowadzone z nich réwnania analizy wraz-
liwosci w ujeciu metody elementéw skonczonych. Przedyskutowano dwie stra-
tegie obliczenn dynamicznych: niejawng i jawna, szczegdlng uwage poswiecajac
tej drugiej, jako bardziej popularnej w praktycznych obliczeniach inzynierskich,
a jednoczesnie wymagajacej nieco innego podejscia do analizy wrazliwosci, niz
dotychczas omoéowione. Wyprowadzenie rownan matematycznych i podanie al-
gorytméw obliczeniowych zostalo zilustrowane kolejnymi przyktadami oblicze-
niowymi.

Rozdzial 6 zawiera uwagi na temat praktycznej implementacji omowionych
algorytmow analizy wrazliwo$ci w programie metody elementow skonczonych.
Wskazano zar6wno na trudnosci (duza ilogé niezbednych dodatkowych instrukeji
i procedur), jak tez na zalety (np. zautomatyzowany charakter duzej czesci
pracy do wykonania przez programiste). Przedyskutowano kwestie mozliwosci
automatycznej generacji kodu na réznych poziomach sformutowari.

W Rozdziale 7 sformutowano wnioski i przewidywane kierunki dalszych ba-
dan.

Niniejsza praca jest rozprawa habilitacyjna autora. Ponizej wyszczegblniono
jej elementy stanowiace oryginalny wktad autora w uprawianej dziedzinie badan
naukowych.

Rozdziat 2:

e wnioski na temat zakresu stosowalnosci DDM i ASM w nieliniowych zagad-
nieniach zaleznych i niezaleznych od $ciezki obciazania,

e przyktady obliczeniowe i wnioski dotyczace nieciagtosci rozwiazan wrazliwo-
Sciowych w zagadnieniach sprezysto-plastycznych,
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e przyklad obliczeniowy i wnioski dotyczace wyboru wielkosci perturbacji
w analizie wrazliwosci metodami pét-analityczna i réznic skoniczonych.

Rozdziat 3:

e rozszerzenie modelu konstytutywnego Simo [110, 111] dla duzych deformacji
sprezysto-plastycznych oraz [115, 116] dla malych deformacji o nieliniowa
posta¢ funkcji wzmocnienia oraz lepkoplastyczne funkcje plyniecia.

Rozdziat 4:

e zrozniczkowanie wzgledem parametréw projektowych globalnych réwnan
metody elementéw skoniczonych, zapisanych zaré6wno w opisie materialnym
jak tez przestrzennym, dla parametrow projektowych wptywajacych na state
konstytutywne oraz na poczatkowa geometrie uktadu,

e zrozniczkowanie wzgledem parametréow projektowych przyrostowych réwnan
konstytutywnych sprezysto-plastycznosci i wyprowadzenie algorytméw obli-
czeniowych shuzacych do wyznaczania zaréwno pelnych, jak tez odpowied-
nich czastkowych pochodnych projektowych naprezenia i parametréw stanu,

e przyktady obliczeniowe oraz wnioski z towarzyszacej im dyskusji na temat
wplywu nierézniczkowalnosci i niedoktadnosci wyznaczenia rozwigzan zagad-
nienia podstawowego na jakos¢ rozwiazan wrazliwosciowych, oraz na temat
efektywnosci numerycznej analizy wrazliwosci.

Rozdzial 5:
e rozszerzenie sformutowania wrazliwosci dla statycznych zagadnieri sprezysto-

plastycznych na zagadnienia dynamiki,

e wnioski na temat efektywnos$ci numerycznej analizy wrazliwo$ci w sformu-
towaniach jawnych i niejawnych dynamiki,

e przyktady obliczeniowe oraz wnioski z towarzyszacej im dyskusji.
Rozdzial 6:

e przyktady i wnioski na temat ‘recznego’ i automatycznego rézniczkowania
kodoéw i sformutowan matematycznych oraz zakresu ich stosowalnosci w im-
plementacji numerycznej analizy wrazliwosci.
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