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PREFACE 
 

 

 

 

The purpose of the Conference is to summarize the recent advances, to discuss the status, the 
development trends and also to share views on the current and future challenges in the wide subject 
area of stochastic mechanics and, more generally, in applied stochastics. 

 
The development of stochastic methods in mechanics and of stochastic dynamics in particular, 

has been achieved over the past four decades owing to the research and collective, persistent efforts of 
many people. However, with no doubt there can be identified a group of world leaders who made mile 
stone, or corner stone, contributions to the subject area, having laid out the avenues for pursuing 
research and having inspired the research of many others. One of those leaders is Professor Kazimierz 
Sobczyk, who and  whose research work are worldwide known. It happens that 2009 is the year of his 
seventieth birthday. This has presented a very special occasion for convening a conference aimed at  
taking a broader view on the status and future challenges of the subject area of stochastic mechanics. 

 
The present book contains the extended abstracts of 26 papers to be presented at the conference. 

The papers cover the range of up-to-date topics in applied stochastics and stochastic mechanics as 
well as some topics in mechanics of materials. These topics are of relevance to Professor Sobczyk 
areas of research and his pioneering contributions.  

 
This volume of abstracts is complemented with an essay by Professor Kazimierz Sobczyk 

presenting his way through stochastic mechanics. We also present a list of publications by Professor 
Kazimierz Sobczyk.   

 
The editors would like to thank all the authors and the attendees of the Conference for their 

contributions to this event.  
 
 

The Editors, 
  

Radosğaw Iwankiewicz  
Hamburg University of Technology  

  
Zbigniew Kotulski  
Institute  of Fundamental Technological Research  
of the Polish Academy of Sciences  
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PATTERN RECOGNITION AND STATISTICAL LEARNING IN STOCHASTIC 
MECHANICS 

 
 

S. R. Arwade1 
1 University of Massachusetts, Amherst, USA 

 
1. Introduction 
 Modern engineering materials often display substantial heterogeneity in their properties at 
scales that are similar to those at which material damage initiates.  Some examples are the variation 
of crystallographic orientation in polycrystalline metals and the elastic property mismatch between 
reinforcing particles/fibers and the matrix of composite materials.  The efficient and safe use of 
these materials in demanding engineering applications such as aviation, space, and defense 
structures requires detailed understanding of the effect of these material heterogeneities on stress 
and strain fields developed under loading and the resulting effect on material service lifetimes. 
 Engineering analysis of materials with strong spatial heterogeneity of material properties 
poses many significant challenges, among which are the randomness of the geometry, the very 
strong gradients present in the material property fields, and the large difference in scales between 
the smallest material constituents and the material volumes used in engineering applications.  All of 
these challenges make the use of standard finite element analysis difficult and computationally 
expensive, often requiring very fine meshes, and, in the case of materials with random 
microstructures, expensive Monte Carlo simulation to provide statistics of the expected response.   
 This presentation describes an alternative, approximate, method for the analysis of materials 
with spatially heterogeneous material properties that makes use of well-developed tools of pattern 
recognition and statistical learning.  The objective is to develop a method that can predict, without 
solution of the governing equations of elasticity, the location of large elastic stress or strain 
concentration in a heterogeneous material subject to deterministic boundary conditions.   
 
2. Problem Statement 
 Let D⊂ Rn  be a domain occupied by a material with spatially varying elastic properties 
C x( ), subject to Dirichlet or Neumann boundary conditions, or a combination of the two types.  
The boundary conditions generate a response r x( ) in the material which can consists of the stress 
and strain fields σ x( ) and ε x( ).  The critical regions of the material are those in which a condition 
of the type  

r x( )> rthreshold  
is satisfied.  That is, locations at which the material response exceeds a threshold value.  Examples 
include conditions on the allowable maximum principal stress or strain, the maximum shearing 
stress, or any other combination of stress or strain values.  Typically, such a condition would be 
associated with a criterion for the onset of damage in the material.  The goal is to identify the 
critical regions that are defined by  
x ∈ Dcritical if r x( )> rthreshold . 
 
3. Methods 
 The problem stated above is solved in an approximate fashion by detecting patterns in the 
material property fields that are associated with the criticality condition being met.  The first step in 
the analysis is to identify such patterns through the analysis of a set of training data.  These training 
data typically comprise a set of randomly generated microstructures for which the response field 
has been calculated using finite element analysis so that for each element of the training set the 
criticality can be determined.   
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 The second step in the analysis consists of identifying patterns in the set of training samples 
in which the response is critical.  This step can be accomplished by a variety of data mining 
techniques and the two used here are Principal Components Analysis and analysis by the Sobol’ 
Decomposition.  At the end of this stage of analysis a set of basis vectors are established that can be 
used to represent the spatially varying material properties of the material.   
 Finally, using the training samples and the new basis vectors, classifiers are developed that 
predict, based on a projection of a random microstructure onto the new basis vectors, whether the 
particular microstructural configuration is likely to lead to critical material response that may in 
turn lead to damage initiation.  The classifiers, either support vector machines or decision trees [1], 
can be implemented in a moving window algorithm to extract Dcritical from D.  The success of the 
approach can be evaluated by assessing the number of true positive, true negative, false positive, 
and false negative results.  In an engineering context, false negative results, which falsely indicate 
safety, are non-conservative, and the classifiers can be trained to avoid such errors.   
 
4. Example Applications 
 This presentation describes the application of the above methods to two example application 
problems.  In both cases the criticality criterion is based on maximum principal stress/strain and the 
material is assumed to remain elastic when subject to uniaxial extension.  The first example 
considers a two dimension fiber-reinforced composite material [2,3] and the second example 
considers a two dimension polycrystalline material in which the grains have varying 
crystallographic orientation [4].  Results in both cases are good, with high true positive and low 
false negative rates.  Figure 1 shows an example result for the polycrystalline case, in which the 
classifier broadly predicts the locations at which the stress in the material is highly elevated.  The 
black pixels indicate critical locations, and panel (b) shows the prediction while panel (c) shows the 
‘exact’ result obtained by finite element analysis. 

 
Figure 1: Example classification of polycrystalline microstructure.  Orientation variation produces elastic 
property variation (a), classifier predicts location of stress concentration (b), finite element analysis provides 
validation result for classifier prediction (c).  
 
5. References 
[1] V.N. Vapnik (1998). Statistical Learning Theory, Wiley, New York. 
[2] H. Liu, S.R. Arwade and T. Igusa (2007). Random composites classification and damage esti-mation 

using Bayesian classifiers. ASCE Journal of Engineering Mechanics, 133(2):129-140. 
[3] A. Louhghalam and S.R. Arwade (in press). Prediction of incipient damage sites in composites using 

classifiers. International Journal of Damage Mechanics. 
[4] L. Tan and S.R. Arwade (2008). Response classification of simple polycrystalline microstructures. 

Computer Methods in Applied Mechanics and Engineering, 197:1397-1409. 
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GENERALIZED FPK EQUATIONS FOR NON-LINEAR DYNAMICAL 
SYSTEMS UNDER GENERAL STOCHASTIC EXCITATION    
 
Gerassimos A. Athanassoulis, Professor, National Technical University of Athens, School of Naval 
Architecture and Marine Engineering, mathan@central.ntua.gr  
 

Ivi-Sevasti C. Tsantili, Graduate student, National Technical University of Athens, School of Naval 
Archit. and Marine Engineering, ivits@central.ntua.gr  
 

Themistoklis P. Sapsis, Graduate student, Massachusetts Institute of Technology, Dept. of Mechanical 
Engineering, sapsis@mit.edu  
 
We address the problem of determining the probabilistic structure of the response of a 
dynamical system governed by a differential system of quite general form, with arbitrary 
polynomial non-linearities, subject to a general stochastic excitation. The latter is 
assumed to be distributed in accordance with a known probability measure, defined over 
the Borel σ−algebra of continuous functions. The goal of this paper is to derive appro-
priate equations for determining the probability density function of the response, in 
terms of the probabilistic characteristics of the stochastic excitation. Since the excitation 
is not a delta correlated process, the response does not obey the Markov property.  
 

Consider, for simplicity, the two-equation differential system  
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 21 2

1 221

1 221

1 1 22
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where ( ) ( )
21

n

q qA t  and ( ) ( )
1 2

n

Q QB t  are known deterministic functions, ( )1 ;y t θ , ( )2 ;y t θ  are 

given stochastic functions, both defined on the common domain ,t TΘ Θ
0

× ×⎡ ⎤= ⎣ ⎦T , Θ  

being the sample space, ( )0x θ  is a given stochastic variable, and 1 221
, , ,q q Q Q  are non-

negative integers, each one non-exceeding a bounded maximum value. Clearly, both 
linear and quadratic stochastic excitation are included in the excitation term of the above 
equation. A special case of particular interest is a linear system driven by quadratic 
(colored) noise, already examined by Luczka (1986), using methods different from the 
one presented herewith. See also Luczka, Hänggi & Gadomski (1995).  
 
A general technique to deal with problem (1) is to derive and study the infinite system of 
moment equations. After truncation this system can become closed (by means of 
appropriate closure schemes) and solved, providing us with useful (yet restricted) 
information about the probabilistic characteristics of the response process.  
 
Another general approach to treat problem (1), initiated by Hopf (1952) in the context of 
his statistical approach to turbulence, is to consider the characteristic functional of the 
response process and find equations governing its evolution (see also Monin & Yaglom 
1971, 1975). Due to the complexity of these Functional Differential Equations (FDEs), 
solutions are known only to very specific cases. An alternative approach, developed by 
Kotulski & Sobczyk (1984), is to directly construct the characteristic functional of the 
response process, exploiting the differential equations for sample functions. The latter 
method, as well as some similar works by Budini & Caseres (e.g., 2004), seem to be 
generally applicable only to linear problems.  
 
An extension to Hopf’s method was presented by Lewis & Kraichnan (1962), who 
introduced the joint, response-excitation, characteristic functional, and found the 
corresponding FDEs (see, also, Beran 1968). In the present study we follow the latter 
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idea, appropriately adapted to problem (1). After deriving the FDEs, we combine them 
and project appropriately to finite dimensions. The projection is implemented by 
substituting the general arguments in the characteristic functional by delta functionals, 
when appropriate. After lengthy calculations we are able to get an equation for the joint, 
response-excitation (4-dimensional) characteristic function ( )

1 21 2 1 2 1 2( ) ( ) ( ) ( ) , , ,x x y ys st t u u υ υϕ . 

Applying Fourier transform, we finally derive an equation governing the evolution of the 
corresponding joint, response-excitation (4-dimensional) probability density function 

( )
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where [ ]
1 2α α iL  is a first-order differential operator with respect to 1 2,α α , defined by  

[ ] [ ]1 2

1 2

21

( ) 1
1 2

1,2 ,
1 2

q qn
q q n n

nn q q

A qα α α α α
α

−

=

∂
+

∂

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠∑∑i iL .          (3)  

[For 1nq =  the term 1
nα
−  should be replaced by 1]. Equation (2) should be supplemented 

by appropriate initial and marginal-compatibility conditions. It generalizes a similar 
result for a single scalar equation, presented in Sapsis & Athanassoulis (2008).  
 
The validity of this new equation is assured by showing that the infinite system of the 
moment equations can be directly derived from it. Further, it should be noted that 
equation (2) applies to any kind of stochastic excitation, with continuous sample 
functions. No specific simplifying assumptions, concerning either the correlation 
structure or the distributions of the stochastic data, are needed. Because of the generic 
nature of the excitation, the response is non-Markovian. Thus, equation (2) can be 
considered as a generalization of the FPK equation to a broad class of stochastic 
dynamical systems, exhibiting non-Markovian responses. Generalizations of the FPK 
equation for specific systems exhibiting non-Markovian responses have also been 
presented by many authors. See, e.g., Luczka, Hänggi & Gadomski (1995) and the 
survey by Luczka (2005).  
 
Equation (2) does not belong to any, already studied, type of partial differential equa-
tions. Its solvability theory and appropriate methods for its effective numerical solution 
should by developed. A particular method for its numerical solution is under develop-
ment and will be presented.  
 
REFERENCES  
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Solution of the first passage problem by asymptotic sampling 

 

Christian Bucher
1
 

1
 Vienna University of Technology, Vienna, Austria 

 

 

1. Introduction 

The first passage problem in random vibrations is readily written as a high-dimensional reliability 

problem. The the first passage probability or probability of failure  in an -dimensional space 

of random variables  can be computed as  

 

   
In this equation,  denotes the joint probability function of the random variables 

 and  denotes the failure domain, i.e. the region of the -dimensional random 

variable space in which failure occurs. In the context of the first passage problem, this denotes 

combinations of input variables such that a response variable exceeds a critical threshold value. The 

generalized safety index (or reliability index)  is defined by  

 

   
 

Here  is the inverse standardized Gaussian distribution function. In [2,3], a novel method 

called Asymptotic sampling is presented which avoids some of the drawbacks associated with 

high-dimensional reliability analysis. The underlying concept relies on the asymptotic behavior of 

the failure probability in -dimensional i.i.d Gaussian space as the standard deviation  of the 

variables and hence the failure probability  approaches zero (see e.g. [1]). Consider a (possibly 

highly nonlinear) limit state function  in which  denotes failure. Let  be the 

standard deviation of the i.i.d. Gaussian variables . It is attempted to determine the 

functional dependence of the generalized safety index  on the standard deviation  or its inverse 

 by using an appropriate sampling technique. One major advantage of this approach is its 

independence of the dimensionality .  

2  Numerical example 

This example a single-degree-of-freedom structural model with a non-linear hysteretic restoring 

force according to the well-known Bouc-Wen model. This structure is subject to an earthquake-type 

ground excitation. The excitation model used in this example is simply an amplitude-modulated 

white noise (shot noise). Based on this model, the earthquake excitation  is generated as  

 

  
 

in which  is white noise with intensity , i.e. ,  is a modulating 

function, here chosen as  
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2 

In order to apply this approach in digital simulation, the continuous time white noise excitation 

needs to be discretized. This is achieved by representing the white noise  by a sequence of 

i.i.d. random variables  assumed to be constant values spaced at time intervals 

. The number of random variables representing the white noise is chosen as  = 1000. The 

total time duration is  = 20 s, so that the time interval is  = 0.02 s. The structural model 

is assumed to have one kinematic degree of freedom . In addition, there is an internal plastic 

displacement variable  describing the plastic behavior of the structure. The structural model 

has a mass . The equation for the derivative  of the plastic variable depends on the state of the 

system. For the Bouc-Wen model this is defined by the differential equation  

 

  
 

For the state variable  we have the equations of motion:  

 

  
 

Here  is a viscous damping factor. The numerical values used in this example are  = 1 MN/m, 

 = 40 t,  = 5 kNs/m,  = 0.603,  = -1.8548,  = 39.36,  = 5.868. The equations of 

motion are rewritten in first-order form and then numerically. Carrying out the asymptotic sampling 

procedure for a displacement threshold of  = 0.5 m yields the first passage probabilities as shown 

in Table 1. For reference, Monte Carlo simulation with one million samples yields the result  

= 3.75. 

  

Table 1: Asymptotic sampling results for different number  of sample points 

 

 100 200 500 1000 

 3.35 3.76 3.80 3.70 

  

References 

[1] K. W. Breitung (1984). Asympotic approximations for multinormal integrals. Journal of 

Engineering Mechanics, 110(3):357–366. 

[2] C. Bucher (2009). Asymptotic sampling for high-dimensional reliability analysis. Probabilistic 

Engineering Mechanics, 24:504–510. 

[3] C. Bucher (2009). Computational analysis of randomness in structural mechanics. Structures 

and Infrastructures Book Series, Vol. 3. Taylor & Francis, London. 

Z
Text Box
International Conference on Stochastic Methods in Mechanics: Status and Challenges, Warsaw, September 28-30, 2009

Z
Text Box

Z
Text Box
12



            STOCHASTIC ROTORDYNAMICS: DIRECT AND INVERSE PROBLEMS 
 
                                                                  
                                                               M. Dimentberg 
              Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, USA 
 
 
      Predicting transverse random vibrations of shafts in rotating machinery may be of importance for 
applications with high environmental dynamic loads on supports, e.g. in transport. Design of a 
turbopump for liquid-propellant rocket engine may be quoted as an example whereby operation of the 
shaft close to its instability threshold was of concern because of increased sensitivity of the whole 
system shaft-machine-vehicle to such loads [1]. On the other hand, small random vibration components 
may sometimes be observed in stationary fluid rotating machinery (turbines, fans, etc) – see Figure 1 
[2]. The measurable random vibration signals (e.g. due to turbulence in working fluid) may then be 
used with advantage for on-line condition monitoring of the shaft during its steady operation at a given 
rotation speed. Survey of recent research results [3 – 8] in transverse random vibrations of rotating shafts is 
presented here with solutions to various direct and inverse random vibration problems for simple single-
disk shafts with potential instability due to internal or “rotating” damping (the latter may also provide a 
simplified representation for destabilizing nonconservative fluid or magnetic forces).  

 

 
 
Fig. 1. Spectral density of vibration signal from bearing of a large fan with dominant peak at rotational 
frequency 9.92 Hz and neighboring peak at the shaft’s resonance (critical speed) at 11.80 Hz [2].    
 
        Transverse random vibrations of a single-disk two-degrees-of-freeedom rotating shaft with both 
external (“nonrotating”) and internal (“rotating”) damping are considered with the latter type of 
damping being a potential source for dynamic instability. Analytical solutions for mean square 
transverse displacements 2 2,X Y  are obtained for linear vibrations during operation below 

instability threshold as well as for tilting oscillations with gyroscopic effect of the disk being 
represented [3]. The results illustrate: i) magnification of the response intensity with increasing rotation 
speed ν  ; thus “universal” magnification law for the mean square whirl radius 2 2 2R X Y= +   is 
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found as ( ) 12 2
*0

1
v

R R ν ν −

=
= ⋅ − where *ν is the instability threshold rotation speed; ii) general 

trend towards equalizing partition of response energy between two perpendicular directions: even in 
case of uniaxial excitation ratio of mean square responses in nonexcited and excited directions 
approaches unity with * 1ν ν → that is, with approaching state of forward whirl.  Furthermore, 
coherence functions of responses in two perpendicular directions are calculated as functions of rotation 
speed [3, 8]. These results are used to develop procedures for on-line evaluation of the shaft’s stability 
margin that rely on response signals measurements during steady operation at any rotation speed 
below *ν .  
      The shaft is also considered for the case where its “rotating” damping is subject to slow temporal 
random variations that may lead to potential “short-term” instability [6]. The corresponding transient 
response analysis as based on the Krylov-Bogoliubov averaging and parabolic approximation for peaks 
of the random damping factor provides probabilistic predictions for outbreaks in the shaft’s radius of 
whirl. Procedure for estimating statistical properties of damping variations from the observed 
intermittent response with outbreaks, or “puffs” is outlined also. 

Lateral vibrations of a single-disk shaft are considered with stiffening nonlinearity taken into 
account either in restoring force or in damping [4, 5, 7]. Certain exact and approximate analytical 
solutions for joint probability density function (PDF) of displacements and velocities in two 
perpendicular directions are obtained. The results may be used to evaluate, from on-line response 
measurements, whether the shafts operates below or above its instability threshold *ν . Specifically, 

PDF w(V) of the squared whirl radius 2 2V X Y= + should be measured for randomly vibrating shaft. If 
w(V )is monotonically decreasing then the shaft is stable in the linear approximation, otherwise its 
observed response represent self-excited oscillations with superimposed random vibrations.  

Finally, first-passage problem is considered for a lightly damped nonlinear shaft. The equations of 
motion are reduced using stochastic averaging. Then analytical solution for the expected time for 
crossing giving level by the whirl radius is derived. It can be applied for the important case where 
stable self-oscillations of the shaft may exist within some range of rotation speeds below instability 
threshold so that random excitation may lead to a “hard” self-excitation of whirl.  

References 
 [1] H. Motoi and others (2003). “Sub-Synchronous Whirl in the Le-7a Rocket Engine Fuel Turbo-

Pump”.In: 2nd InternationalSymposium on Stability Control of Rotating Machinery (ISCORMA-2), 
pages 160 – 169, Gdansk.  

[2] J. Hall (2003) Private communication. 
[3] M. Dimentberg, B. Ryzhik and L. Sperling (2005) Random Vibrations of a Damped Rotating Shaft. 
Journal of Sound and Vibration, 279, 275 – 284. 
[4]  M. Dimentberg (2005). Nonlinear Random Vibrations of a Rotating shaft. ZAMM,   85, 211 – 212. 
[5]  M. Dimentberg (2005). Random Vibrations of a Rotating Shaft with Nonlinear Damping, 
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1. Introduction 

  One of the most challenging  problem in the field of nonlinear systems under stochastic 
agencies is to find statistics of the response process. In this framework the Path Integral (PI) method 
is an effective tool to provide a step-by-step integration technique in terms of Probability density 
function [see e.g. [1]]. The method starts from the Chapman Kolmogorov equation combined with 
the so called short-time Gaussian approximation (STGA). Keeping this in mind, the probability 
density function (PDF) at time ( )t τ+ is a convolution integral involving the PDF at time t and a 
Gaussian  kernel that represents the conditional density of the response PDF. The latter is the 
solution of the Fokker Planck equation with assigned deterministic initial condition at time t, that 
may be easily evaluated by considering that for ( )τ  small such a response is Gaussian distributed 
(STGA). Even though the formulation is quite simple numerical problems arise to evaluate the 
convolution integrals especially for numerous degree of freedom systems. Moreover working in 
terms of response moments is impossible since an hierarchy of moments immediately appears.  
Recently it has been shown that functional moments that is moments of the type E[iX –γ], C∈γ , 
0<Re(γ)<1 always produce a representation of both PDF and Characteristic Function (CF) in the 
whole domain of existence of the two domains. It has also been shown that E[-iX –γ] coincides with 
the Riemann Liouville fractional derivative of the CF in zero. By using Melling transform it has 
also been shown that 

 
 

 (1)                                   ( ) ( ) ( )1
2

i

X i
E iX d

i
ρ γ γ

ρ
φ ϑ γ ϑ γ

π
+ ∞ − −

− ∞
⎡ ⎤± = Γ ⎣ ⎦∫ m                                             

 

(2)                                    ( ) ( ) ( ) ( ) ( ){ }i 1
2 i

1 Re 1 i i d
2 iXp x E X x

ρ γ γ

ρ
γ γγ

π
+ ∞ − −

− ∞
⎡ ⎤= Γ Γ − −⎣ ⎦∫                           

 
Where ( )Xφ ϑ is the CF, ( )Xp x  is the PDF, ( )Reρ γ= and ( )Γ ⋅ is the Euler Gamma function. It has 
to be remarked that in eq. (1) and (2) integrals are performed along the imaginary axis and then the 
remain finite also for α - stable processes, for which the integer moments of order greater than two 
remain divergent ones. Discretization of integrals (1) and (2) produces quite good results as 
demonstrated in [1]. Keeping these results in mind in the paper it is shown that the PIS remains an 
amenable problem also from computational point of view [2, 3]. In the latter approaches the PIS 
was implemented in terms of fractional moments. In the proposed paper a different strategy is 
proposed to evaluate probability density function and CF at time ( )t τ+  by knowing the PDF or the 
CF at the previous time instant t. 
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In order to aim at this as a first step the PIS is converted in terms of CF by means of the Fourier 
transform of the Chapman Kolmogorov equation, then the CF at time t is converted in terms of 
fractional moments as shown in eq.(1) and then the fractional moments at time ( )t τ+ may be easily 
evaluated by eq.(2).  
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STATISTICS OF WAITING TIMES BETWEEN SUDDEN CLIMATE
CHANGES AS A TOOL FOR IDENTIFYING POSSIBLE CAUSES

Ove D. Ditlevsen1 and Peter D. Ditlevsen2

1Technical University of Denmark, Kgs. Lyngby, Denmark

2The Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

Sudden climate shifts between two different climatic states have been identified in ice core records
covering the last ice age. There has been a long-standing argument among climate scientists on
whether these shifts are due to some hitherto unknown external periodic influence maybe from the
Sun, or if they are due to internal chaotic fluctuations. In the latter case these fluctuations would most
likely occur erratically, with a "memory" reflecting the short time scales of the weather fluctuations.

The erratic appearance of the oxygen isotope record (δ18O) shown and explained in the figure
below makes it natural to think of the record as a random response of a stochastic noise driven system.
However, the saw tooth character of the sample curve makes it not quite obvious how such a system
can be identified from the sample. While the oxygen isotope record is a proxy for the temperature
(first pointed out by Dansgaard) there are other climate proxies embedded in the ice cores. One of
these is the dust sedimentation recognized by the variation of the calcium ion concentration down
through the ice cover as shown in the bottom panel of the figure [log (Ca)]. The DO-events are clearly
recognized in this dust record, and no obvious saw tooth behavior is seen.

In fact, a quite good suggestion of a stochastic model is given in [1]. The model gives responses
with statistical properties close to those of the dust record. It is shown that the marginal distribution
(after suitable first and second moment normalization of the record) as well as the DO-event be-
havior are well modeled by the stochastic differential equations dY =−(dU /dY )dt +σ1 dX +σ2 dL,
dX =−X dt+

p
1+X 2 dB , where U is a bistable potential inferred from the data, dB is standard Brow-

nian noise, dL is Levy noise with stability index α = 1.75, and σ1/σ2 = 3. The stationary marginal
distribution of the X -process is the Cauchy distribution with density proportional to 1/(1+x2).

It is a challenge to find a similar model for the oxygen isotope record. The problem is to capture
the gradual cooling that takes place after each DO-event (the saw tooth behavior). Due to strong
negative correlation between the δ18O-record and the log(Ca)-record (even though they are from
two different locations) it seems reasonable to look for an extension of the established stochastic
differential equation model for the log(Ca)-record.

However, before going on in this direction some preliminary much simpler statistical investiga-
tions of the time point series of the DO-events are highly relevant. Even though the analysis is simple
and within the toolbox of the elementary statistics textbook, some points of the analysis are inter-
esting. In particular the problem that appear because of the small sample size deserves attention.
The simplest possible well fitting model of memoryless random point generation turns out not to be
distinguishable from a model built on random deviations from a periodic forcing of the DO-events.
It seems that the principle of simplicity of description (known as Occam’s razor) is the only way to
favor the assumption of generation by pure randomness.

This will be the topic of the presentation even though the work has already been published thanks
to a quite fast publication policy of the Journal of Climate [2].

1

Z
Text Box
International Conference on Stochastic Methods in Mechanics: Status and Challenges, Warsaw, September 28-30, 2009

Z
Text Box

Z
Text Box
17



Figure 1: The upper panel shows the δ18O oxygen isotope record measured down through the ice
cover at a given location in central Greenland (the NGRIP ice core project). The upper circles mark
the transitions from the stadial cold climate to the interstadial warm climate (off-on points). These
are the so-called Dansgaard-Oeschger (DO) events. The lower circles mark the transitions back from
the interstadial to the stadial climate (on-off points). The middle panel zooms into the period 38-48
kyr BP, where it is seen that the determination of the on-off transitions are much more uncertain than
determining the sharp off-on transitions. This is indicated by errorbars. The bottom panel shows the
logarithm of the calcium ion concentration as a function of time in the GRIP ice core. The temporal
resolution is about 1 year, much better than for the δ18O record that suffers from the effect of vapor
diffusion. (For clarification it should be noted that the time scales in the top and the bottom panels
differ by some factor implying that the DO events are not at the same nominal time on the two scales.
Thus the numerically largest correlation is obtained with some linearly increasing time shift).
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STOCHASTIC HOMOGENIZATION FOR CHAOTIC AND  
QUASI-PERIODIC MASONRY STRUCTURES  
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1. Introduction 

Ancient masonry structures are often characterized by a chaotic distribution of stones in the 
walls. In other cases, the shape of the stones and their disposition are such that the structure is 
called quasi-periodic. In these circumstances, it has been recognised that the best way for defining 
the mechanic characteristics of the structure is the stochastic one, through the use of the random 
fields. In fact, the deterministic homogenization, often used for the classical periodic masonry 
structures, fails for chaotic and quasi-periodic masonry structures and the stochastic 
homogenization must be considered. In the literature, the stochastic homogenization is referred to 
the first order statistics, both for the mechanic properties and for the response quantities 
(displacements and internal forces). It can be applied by using some different approaches: the 
stochastic convergence approach [1], the polarization tensor approach coupled with the Hashin-
Shtrikman variational principle [2] and the concentration tensor approach coupled with the Eshelby 
equivalence principle. Some approaches in literature consider higher order statistics, but they 
cannot be considered as homogenization approaches. They are referred as Stochastic Finite Element 
(SFE) approaches; the most used are: the stochastic perturbation methods [3] and the series 
expansion approaches, among which the most known is the Karunen-Love series method coupled 
with the polynomial chaos approach [4]. 

In the present work a stochastic homogenization approach based on the second order statistics 
is presented. It is founded on the extension to the second order analyses of the Moving Window 
Method (MWM), that has been used in the first order stochastic homogenization approach [1,5]. In 
particular, the extensions of the Voigt and Reuss limits and of the Hill theorem will be considered.  

2. Basic formulation of the first order stochastic homogenization 

Under the assumptions of stochastic homogeneous and ergodic medium, the average elastic 
constitutive equation can be written as: 

(1)  ( ) ( ) ( )ij ijkl ijCσ ε⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦x x xE E  

where ( )⎡ ⎤⎣ ⎦E  indicates the mean of ( ) , while ijσ , ijε  and ijklC  are the stress, strain and stiffness 
tensors. The classical homogenization approach searches for that ideal materials for which the 
following relationship holds: 

(2)  ( ) ( )( )h
ij ijkl ijCσ ε⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦x xE E  

 

If the strains are assumed constant, ( ) ( )o
ij ijε ε=x , then eq.(1) gives 

(3)  ( ) ( ) ( )( ) ( ) ( )      o h V
ij ijkl ij ijkl ijkl ijklC C C Cσ ε⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⇒ ≡ ≡⎣ ⎦ ⎣ ⎦ ⎣ ⎦x x xE E E   
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( )V
ijklC  being the Voigt interpretation of the homogenized stiffness tensor. On the contrary, if the 

stresses are assumed constant, ( ) ( )o
ij ijσ σ=x , then  

(4)  ( ) ( ) ( )( ) 1( ) ( ) ( )      o h R
ij ijkl ij ijkl ijkl ijklD C D Cε σ

−
⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ⇒ ≡ ≡⎣ ⎦ ⎣ ⎦ ⎣ ⎦x x xE E E  

 

ijklD  being the point compliance tensor and ( )R
ijklC  the Reuss interpretation of the homogenized 

stiffness tensor. The Hill theorem ensures that ( ) ( ) ( )R h V
ijkl ijkl ijklC C C≤ ≤ , the equality sign being strictly 

verified only when the reference volume of the structure is infinite.  

For two finite reference volume 1 2Ω < Ω , indicated with ( , )ia
ijklC Ω  and ( , )ib

ijklC Ω  the average stiffness 
tensors obtained with constant strains and stresses, respectively, then it has been shown that the 
following fundamental relationship holds [6]:  

(5)  1 2 2 1( , ) ( , ) ( , ) ( , )( )b b a ah
ijkl ijkl ijkl ijkl ijklC C C C CΩ Ω Ω Ω≤ ≤ ≤ ≤  

 

This last relationship is fundamental in the estimation of the homogenized stiffness tensor in terms 
of mean values. An effective approach for the evaluation of  ( , )ia

ijklC Ω  and ( , )ib
ijklC Ω  is the MWM.  

3. Proposed approach 

The aim of the present work is the extension of the result summarized in the previous section 
to the second order statistics. This means that one will work in terms of the correlation function 

(6)  ( ) ( ) ( ) ( ) ( )( )
2 1 1 2 1 2

C
ijkl ijkl mnpq ijkl mnpq
mnpq

C C C C⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦x x x x x xR E E E  

 

For example, in these terms, the homogenized stiffness tensor will be that tensor ( 2)h
ijklC  satisfying 

the following relationship:  

(7)  ( ) ( ) ( )( 2)( ) ( ) ( )
2 1 2 1 2 1

hC
ij ijkl kl
mn mnpq pq

σ ε− = − −x x x x x xR R R  

 

that is an extension of eq.(2). In a similar way, it will be shown as the results given into eqs(3-5) are 
extended to the second order statistics.   
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1. Introduction 
 Hydrogen lowers the endurance of steel. In particular, it accelerates fatigue crack growth, 
thereby shortening fatigue lifetime of structures [1]. In the present paper a simple model of the 
influence of hydrogen on fatigue crack growth is presented. The model is then employed to perform 
a stochastic analysis of crack growth in a thin plate with a random hydrogen content. 
 
2. Description of the problem 
 The analysis is performed in the simple case of an infinite, thin plate with a rectilinear crack 
of length a2 . The plate contains hydrogen and is subjected to a remote, cyclic loading )(tS , 
perpendicular to the crack. It is assumed that diffusion is very slow, so that hydrogen concentration 
in the plate does not change significantly during crack propagation. There are small variations in the 
hydrogen content of the plate, resulting from hydrogen trapping and material inhomogeneities. 
From the stochastic point of view, hydrogen concentration in the plate is described by a two-
dimensional stationary random field ),,( γyxC , where x , y  are the coordinates on the plate, and γ  
is the parameter of randomness. 
 
3. Mechanical model 
 Empirical equations of fatigue crack growth in hydrogen free metals usually take the form [2] 

(1)  ),,( minmax parametersmaterialKKf
dN
da

=  

where N  is the number of load cycles, and maxK , minK are the maximum and minimum stress 
intensity factors at the crack tip over a cycle of loading. It is postulated that, in the presence of 
hydrogen, fatigue crack growth can also be described by equations of type (1), after suitably 
modifying the stress intensity factors. The following assumptions are made: 
• There is a Barenblatt-Dugdale cohesive zone in front of a crack tip, 
• Hydrogen degradation follows the hydrogen enhanced decohesion mechanism, with a linear 

dependence of cohesive forces on hydrogen concentration [3], 
• Hydrogen concentration is approximately constant in the cohesive zone, 
• Residual stresses along the crack are negligible; fatigue crack growth is only influenced by 

hydrogen degradation of the crack tips [4].  
For the considered geometry, the modified mode I stress intensity factors take the form 

(2)  a
C

S
K π

ασ
σ
−

=
0

0  

where 0σ  is the cohesive force in the absence of hydrogen, α  is the coefficient of degradation, and 
C  is the hydrogen concentration in the cohesive zone. It is assumed that fatigue crack growth in the 
presence of internal hydrogen can be adequately described by combining equations (1) and (2). 
 
4. Stochastic analysis 
 The presented model allows a convenient stochastic analysis of crack growth in the random 
hydrogen field ),( γxC  -  here restricted to one dimension, along the extension of the crack. ),( γxC  
has a constant mean C  and a correlation function ),( 21 xxKC .  
 A simple example problem can be obtained by specifying (1) to the Paris equation 
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(3)  mKA
dN
da

∆=  

where minmax KKK −=∆ , and A , m  are constants of the hydrogen-free material. Equation (2) 
gives 

(4)  aSa
C

S
K π

ξ
π

ασ
σ

−
∆

=
−
∆

=∆
10

0  

where minmax SSS −=∆ is the amplitude of the cyclic loading S , and 0/σαξ C=  is a stationary 
random field. The following treatment is similar to the one presented in [5]. 
 From (3) and (4) one receives (after noting that - with high probability - 1<<ξ , and by 
making a linear approximation) 
(5)   daayxdaaBdN mmm 2/2/ )]([)1( −− −+≈−= ξξξ  
where )/(1 2/mmSAB π∆= , mBx )1( ξ−= , 1)1( −−−= mmBy ξ , and )(/ 0 ξσαξ EC == .  
 From equation (5) it is easy to obtain the basic probabilistic characteristics of the critical 
number of cycles crN  (number of cycles to failure). The mean and variance are 

(6)  ][)1(][][ /1
0

/1

0

nn
cr

m
a

a
cr aaBndNENE

cr

−−== ∫ ξ  

(7)  ∫ ∫ −=−=
cr cra

a

a

a
C

m
crcrcr dadaaaKaazNENENVar

0 0

2121
2/

21
22 ),()(]])[[(][  

where 2≠m , )2/(2 mn −= , 0/σγyz = , and 0a , cra  are the initial and critical crack lengths, 
respectively. Generally, equation (7) must be computed numerically.  
 In the case when ),( γxC  is a Gaussian process, crN  is by equation (5) also Gaussian, and 
therefore is described completely by the mean and variance given in (6) and (7). The accuracy of 
this result is limited by the linear approximation made in equation (5) and by the fact that ),( γxC  
must be positive and so can not be strictly Gaussian. 
 
5. Conclusions 
 A method of describing fatigue crack growth in thin steel plates containing hydrogen was 
briefly outlined. The method is convenient in performing stochastic analysis of crack propagation, 
when hydrogen concentration in the plate is described by a random field. 
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1. Introduction 

          State vector of a dynamic system under a Poisson train of  impulses is a non-diffusive 
Markov process and its joint probability  density function satisfies an integro-differential 
generalized 
Fokker-Planck-Kolmogorov equation which is  also called Kolmogorov-Feller equation (cf. e.g. 
[1]). If the train of impulses is driven by non-Poisson, for example renewal, counting processes, the 
state vector is not a Markov process. For some classes of non-Poisson counting  processes the non-
Markov pulse problems can be converted into the Markov ones by augmenting the state vector of 
the dynamic system by auxiliary variables driven by either a single or two independent Poisson 
processes. Exact techniques of this kind have been developed for trains of impulses driven by 
Erlang renewal processes [2,3] or by a generalized Erlang renewal process [4]. As the augmented 
state vector is Poisson-driven, the differential  equations for response moments can be derived. In 
all those impulse process excitations problems the displacement response is continuous, the velocity 
response is continuous-jump and the auxiliary variables are purely jump processes. As those 
auxiliary jump processes are driven by Poisson processes, they can be alternatively characterized in 
terms of a number of Markov states. Hence, the problem is jointly described by the original state 
variables  and the Markov states of the auxiliary jump process. Accordingly, the response 
probability distribution may be characterized by a  joint probability density-distribution of the 
response variables and of the states of a pertinent Markov chain. The fundamental  equation for 
continuous-jump Markov processes is the general integro-differential Chapman-Kolmogorov 
equation [5]. The explicit integro-differential equations governing the joint probability density-
distribution of the response are obtained from the Chapman-Kolmogorov equations, after the 
determination of the jump probability intensity functions for the continuous-jump and purely jump 
processes. The explicit equations governing the response probability density have been derived for 
oscillators under random trains of impulses driven by single, renewal processes [6,7]. 
 

2. Statement of the problem 

In the present paper the approach to the excitation impulse process  based on the integro-
differential Chapman-Kolmogorov equation is  extended from a single renewal impulse process to a 
a  multi-component one. First, the  integro-differential Chapman-Kolmogorov equation is  
introduced and its use for purely jump processes is demonstrated. The examples of purely jump 
stochastic processes are the Poisson counting process and a two-state Markov process (a rectangular 
wave process).  The considered  impulse excitation  consists of a number of n  random trains  of 
impulses, each of whom is driven by an Erlang renewal process with parameter k(i). The driving 
processes are assumed to be statistically independent. Each of the impulse processes is recast into a 
Poisson driven impulse process, with the aid of  auxiliary, purely jump stochastic variables, each of 
whom is governed by a stochastic differential equation driven by the i-th Poisson process.  
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As each i-th Erlang impulse process is characterized by k(i) "phases", a chain of  k(i)  Markov 
states is associated with it. The Markov chain for the whole problem is constructed by considering 
the coincidences of the states of the individual jump processes. Thus the total number of Markov 
states is determined.  The  jump probability intensity functions pertinent to this problem are 
formulated. The explicit equations governing the joint probability density-distribution function of 
the response and of the Markov states of the auxiliary jump variables are derived from the general 
integro-differential forward Chapman-Kolmogorov equation via the integrations over the state 
space.  The resulting equations form a set of integro-partial differential equations. 
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1. Wireless Sensors Networks 

Many solutions that wireless technology offers for practical engineering problems are based on 
Wireless Sensors Networks (WSN). These are networks consisting of small devices, usually 
autonomously controlled and with their own energy resources, equipped with different kinds of 
detectors. These devices with measuring detectors play a role of nodes of the network. Except of a 
measuring function, nodes also perform data processing and a communication function. WSN are 
useful for constructing efficient and cost-effective measuring and diagnostic systems. A 
module-based structure of a WSN makes it possible to connect to as a measuring device many 
different sensing elements, both analogue and digital. This, in turn, makes WSNs a cheap and flexible 
measuring tool. Moreover, since WSNs in a communication layer work as P2P or ad-hoc networks, 
they have adaptive capabilities in diversified working conditions and are capable of transmitting and 
forwarding data over large distances. Weak points of WSNs’ nodes are their limited communication 
and calculations possibilities and limited energy storage. Therefore, for proper functioning, they need 
optimized location of nodes of a WSN [1] and special communication protocols [2].  

2. Reputation  
Two concepts start playing an important role in modern applications of probability: trust and 

reputation. We can define trust as probability that a party will behave according to our expectation, 
honestly, in a specific situation. In this context, reputation can be defined as conditional probability of 
honest behaviour of a party where the condition is an available experience accumulated from past 
behaviour of the party. Such a definition can be generalized (e.g., to a vector-valued form, reflecting 
several aspects of reputation), but its probabilistic origin remains valid.  

3. Reputation systems 

To estimate reputation of a party or a service, we must define a reputation system, which 
enables collecting, exchanging, and processing appropriate information. We must also define a 
reputation measure, which lets us assigning reputation scores (e.g., probabilities) to events registered 
by the reputation systems. Existing reputation systems can be classified according to their functional 
properties (e.g., objective/subjective, centralized/distributed) and according to mathematical methods 
applied (probabilistic, fuzzy logic-based, deterministic), see [3].  

Reputation systems found their application in practice, especially in web services, e.g., 
electronic auctions, e-shops, social networks, etc. There are also attempts to apply a reputation 
system for validating routing nodes in ad-hoc networks [4]. Such a tool was very useful for 
optimization of communication in Mobile Ad-hoc Networks under random disturbances.  

4. Optimal sensors’ location  
Permanent structure's monitoring enables immediate and effective detection of its failure or its 

anomalous behaviour. It is especially important for proper functioning of intelligent structures and 
mechanisms and for their safety. In the literature one can find methods of optimization of sensors’ 
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location using different criteria [5]. One of most often used criterion comes from information theory 
[6]; it is extensively used in problems of practical interest [7], [8], [9].  

Application of WSNs for environmental and structural monitoring not only makes it possible 
permanent observation of working structures but also increases functionality of the monitoring 
system and decreases its overall cost. However, designing WSN-based monitoring system, one must 
take into account additionally (except of usual engineering constraints) specific restrictions 
connected with low energy broadcasting in WSN. Thus, in such a case the optimal location of sensors 
should take into account, both, conditions connected with structure’s behaviour (finding the most 
“informative” measurement points) and environmental conditions determined by random 
disturbances of transmission of a signal measured, depending on external electromagnetic fields and 
structural barriers, see [10].  

Thus, optimization of sensors’ locations in a WSN for structural monitoring needs taking into 
account criteria of quite different nature. Firstly, we must optimize communication in an ad-hoc 
network (a quality of transmission, the network performance and lifetime of the sensors) with an 
additional constraint of a limited communication range of sensors. Secondly, we should choose such 
locations of sensors that give best measurements for specific engineering purposes. A natural solution 
seems to be application of a multi-criteria optimization system, which unifies very different measures 
of quality to a single decision criterion. The proposed application of a reputation system dedicated to 
the WSN dodges the problem of different optimality criteria for communication and for 
measurements. In these both cases, we measure quality with probability of certain events, so 
consolidation of the obtained results can be made on grounds of the probability theory. Moreover, 
such an approach makes it possible to construct an adaptive optimization system consistent to the 
reputation-based optimality criterion. Statistical data collected during measurements are a good 
source for reputation estimations of all events required to choose optimal locations of sensors in the 
WSN designed for most structural and environmental engineering problems.  
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1. Introduction and motivation 

In problems that cover a wide range of engineering applications, a reference mode of the 
system operation is associated with motion within an admissible domain G; exit from this domain 
can be in some sense catastrophic. Examples are the loss of integrity and the destruction of 
structures, the loss of stability, etc. The mean time to escape from a region of desired operations is 
one of the most basic reliability measures in stochastic dynamics. 

Formally, the mean escape time Eτ can be found as a solution to the boundary problem for a 
relevant Fokker-Plank equation [1]. Whilst there are a small number of cases for which closed-form 
solutions are available, in most cases one must attempt numerical approximation, and so one is 
limited to only low dimensional problems. Even putting aside the restriction of numerical methods 
to low dimensions, one would prefer an explicit formula for Eτ  since they have many other uses. In 
particular, beyond simply identifying the rate of decay, an analytic expression for Eτ can be used to 
characterize the most likely way to escape and/or to choose an efficient control strategy.   

Over last decades, much attention has been given to weakly perturbed systems with weak 
dissipation, e.g. [2] – [4]. The purpose of this paper is to discuss recent results concerning explicit 
solutions of the first-passage problem for two opposite classes of stochastic oscillators, a 
multidimensional non-dissipative oscillator with non-small additive noise and a weakly perturbed 
oscillator with significant dissipation.  

2. Stochastic models  

As a first model, we consider a multidimensional non-dissipative oscillatory system excited 
by additive white noise. The equations of motion are written in the Lagrangian form 
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∂ , q, q&  ∈ G ∈ R2n 

where q ∈ Rn is the vector of generalized coordinates; w(t) is standard Wiener process in Rm; 
L(q, q& ) = T(q, q& ) – U(q) is the Lagrangian of the system, T(q, q& ) is the kinetic energy, U(q) is the 
potential energy. The diffusion matrix σ yields a symmetric positive definite matrix A = σσ T. In 
general, the reference domain G is considered as a connected open bounded set in R2n with smooth 
boundary Γ and compact closure⎯G.  

Escape time for system (1) is defined as the time needed to reach a critical level of energy H* 
from the initial state with the energy H0. This implies that  

(2)  G: {H0 ≤ H < H*} , Γ : {H = H*} 

In sharp contrast to the great majority of stochastic problems, for the non-dissipative 
oscillator (1) one can obtain a precise analytic solution of the Fokker-Plank equation. As shown in 
[5], the mean time to escape from the domain (2) is defined as 
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(3)  Eτ = 
A
HH

Tr

0* − . 

In order to take proper account of the effect of dissipation, we consider an opposing model. 
The equations of motion are written as 
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where B(q, q& ) is the matrix of dissipation forces; the small parameter ε > 0 implies the weak effect 
of noise compared to the effect of potential and dissipation forces. The matrices B(q, q& ) and A(q, q& ) 
= σ(q, q& )σT(q, q& ) are assumed to be symmetric positive definite in⎯G.  

Taking the noiseless system asymptotically stable, we construct a closed-form logarithmic 
asymptotics of Eτε as ε → 0 by means of the large deviations techniques [2], [3]. It has been shown 
[6] that the asymptotic estimate can be represented as a sum of two terms associated with the kinetic 
and potential energy, respectively. The first term can be found explicitly; the second term satisfies a 
linear PDE. The explicit solution of the latter equation can be obtained for several classes of 
systems.  

Finally, we use the solution of the above problem to develop a control strategy ensuring a 
noise-independent escape rate in the controlled system. This result is exploited to design a 
stabilizing control for a gimbal suspensions gyroscope. 
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1. Background 

Many modern footbridges are light structures in the sense that the non-permanent load is 
rather large compared to the permanent load, constituted by the weight of the bridge. In recent years 
footbridges have become longer, and more slender and flexible designs have been adopted. As a 
result, dynamic excitation – typically from the pedestrians using the bridge – have become a major 
design issue. A typical design procedure – originally introduced in [1] and later refined in [2] and 
[3] – consists in a Fourier expansion of typical footfall records, followed by evaluation of the 
response to the harmonic component closest to the base frequency of the bridge. The corresponding 
response acceleration of the original structure is of the form 

  2

2
j

j j j j
j j

q
r

m
ω

ς
= =u u u    

In this formula ü is the physical acceleration, and is the amplitude of the mode-shape vector jr ju  
with angular frequency jω . The result corresponds to a simple resonance, where the load is 
represented by the modal load intensity , while the denominator is the product of the modal 
damping ratio 

jq

jς and the modal mass . This formulation leads to a very simple design 
procedure, because it has been shown [4] that the resonant response of a mode shape with a tuned 
mass damper can be represented by an equivalent damping ratio, which is half the damping ratio 
applied in the tuned mass damper.  

jm

 The advantage of the above argument is its simplicity in design, see e.g. [3]. However, it will 
often be a rather conservative design procedure, because it is based on the assumption that the 
excitation is concentrated in a very narrow frequency interval around the natural frequency of the 
structure. Experimental measurements of the loading from walking pedestrians indicates that the 
frequency has a coefficient of variation around 0.06-0.09 [5,6]. Thus, the spread of the loading 
frequency is much larger than the width of the resonance peak of the original structure. This means 
that the severity of the loading of the original bridge without additional tuned mass absorber(s) is 
overestimated, and that the response of the bridge after installation may be inaccurately determined. 

2. Stochastic design model 

The literature contains numerous formulae giving slightly different ‘optimal’ damping and 
frequency parameters for tuned mass absorbers. However, it has been demonstrated via analytical 
solutions for the extreme case of white noise excitation, that calibration of the tuned mass absorber 
for a resonant load gives the same response to within a fraction of a percent [7]. This observation 
leads to a simple procedure for evaluating the effect of frequency spreading on the bridge response 
– both in the original state and after installation of a tuned mass absorber.  

The loading including a representative frequency spread can be represented by a simple 
rational function centred around the mean footfall frequency and with an appropriate coefficient of 
variation. When extended symmetrically to include negative frequencies this leads to a spectral 
density that can be generated from white noise by a second order filter. The system, consisting of 
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the structure – here represented by an idealized single-degree-of-freedom system – and the tuned 
mass, is represented by a coupled two-degree-of-freedom system. In total the system including the 
tuned mass absorber can be described in terms of six state-variables driven by a white noise 
process. As mentioned above the tuned mass absorber parameters can be calibrated as if the load 
were harmonic, and thus a parametric analysis of the effect of the frequency characteristics of the 
loading can be carried out by computing the covariances of the system by use of Lyapunov’s 
equation. The paper will show representative results and discuss the influence on realistic design 
situations for footbridges.    
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1. General statement 
The general approach that relates microscopic and nonlocal models with those at the 

macroscopic scale is considered. The macroscopic models are in terms of a system of 
reaction-diffusion equations. The micro-scale level is defined by a large number of interacting 
entities, and is in terms of a Markov jump process and related linear evolution equations. The 
intermediate scale (meso-scale) refers to the description of test-entities and is given in terms 
of nonlinear Boltzmann--type equations. Mathematical relationships between these three 
possible descriptions are proved and explicit error estimates are given.  

2. Details 
Usually the description of complex systems (e.g. biological populations) is carried out 

on a macroscopic level of interacting subpopulations within the system. Such an approach can 
be related to deterministic reaction-diffusion equations. They describe the (deterministic) 
evolution of densities of subpopulations of the system rather than the individual entities.  

However, in many cases the descriptions on a micro-scale or a meso-scale of interacting 
entities (particles, cells, individuals, ...) seem to be more appropriate. The important feature of 
the microscopic level can be a nonlocal way of interactions: one entity may interact with 
another one even if the distance between them is not negligible.  

As a prototype of the mathematical setting and relationships between three possible 
scales of description: micro, meso and macro can be kinetic theory of rarefied gases. There is 
however an important difference: in the case of general (e.g. biological) systems a basic 
microscopic theory, as the Newton Laws in kinetic theory case, it is not available. Therefore it 
is reasonable to apply the following strategy. One may start with the deterministic 
macroscopic model for which the identification of parameters by an experiment is easier. 
Then one may provide the theoretical framework for modelling at the microscopic scale in 
such a way that the corresponding models at the macro- and micro-scales are asymptotically 
equivalent, i.e. the solutions are close each to other in a properly chosen norm. Then, if the 
parameters of the microscopic model are suitably chosen, one may hope that it covers not 
only  macroscopic behaviour of the system in question, but also some of its microscopic 
features. The microscopic model by its nature can be richer and can describe a larger variety 
of phenomena. 

We review a general conceptual framework for the program ([1]-[4]) of finding possible 
transitions between the different levels of description i.e.  

 
(Mi) at the level of interacting entities (micro-scale),  
 
(Me) at the level of the statistical description of a test-entity (meso-scale), 
 
(Ma) at the level of densities of subpopulations (macro-scale).  
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The levels (Mi) and (Me) are of the nonlocal character.  
In mathematical terms we are interested in the links between the following 

mathematical suitable defined structures: 
 
(Mi) the micro-scale of stochastically interacting entities, in terms of jump Markov  
processes, that lead to continuous (linear) stochastic semigroups;  
 
(Me) the meso-scale of statistical entities, in terms of continuous nonlinear semigroups   
related to the solutions of nonlinear Boltzmann-type nonlocal kinetic equations; 
 
(Ma) the macro-scale of densities of interacting entities, in terms of dynamical systems  
related to nonlinear reaction-diffusion equations.  
 
In Ref. [1]-[4] such a conceptual framework was developed for various situations of 

biological interest. In particular, Ref. [1] deals with the mathematical theory for a large class 
of reaction-diffusion systems (with small diffusion). Ref. [2] shows that the theory can be 
generalised to take into account reaction-diffusion-chemotaxis systems (i.e. reaction-diffusion 
equations with a chemotaxis-type term).  
          These methods may lead to new and more accurate modelling of complex processes. 
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Regulation of gene expression is a chemical process involving many coupled elementary chemical 
reactions modelled usually by systems of differential equations describing time evolution of 
molecular concentrations. However, due to low numbers of molecules involved in gene expression 
processes, random fluctuations may play a significant role. To describe stochastic effects in 
biochemical reactions taking place in living cells, various birth and death processes were studied.  
 
We will review a simple model of protein production which can be completely solved, that is one 
can obtain analytical expressions for the expected value and the variance of the number of protein 
molecules [1]. Then we will discuss specific models of mRNA- and protein-regulated networks. In 
particular, we will discuss contributions of regulatory factors to gene expression noise in four basic 
mechanisms of negative gene expression control: 1) transcriptional regulation by a protein 
repressor,  
2) translational repression by a protein, 3) transcriptional repression by RNA, and 4), RNA 
interference with the translation. Our results show that translational repression results in a higher 
noise than repression on the promoter level [2]. 

In the standard birth and death processes, products of various reactions appear or degrade 
immediately after corresponding reactions are triggered. However, many such reactions take a 
considerable amount of time. Therefore to describe them we have to introduce models with time 
delays. Reactions with delays are of two kinds: non-consuming and consuming. Reactants of 
unfinished consuming reactions cannot participate in new reactions, reactants of non-consuming 
reactions can participate in new reactions. We will discuss simple models of gene expression with 
time delays. We will analyze both kinetic rate equations and corresponding birth and death 
processes with both types of time delays. Many kinetic rate equations with non-consuming 
reactions undergo the Hopf bifurcation when the delay increases and crosses a critical value. For 
small time delays the system evolves into its stationary state with damped oscillations observed in 
transient states. We will show that such effects are not present in the case of consuming reactions 
where for all values of time delay the unique stationary state is asymptotically stable. In the 
stochastic models corresponding to deterministic rate equations, the variance of the number of 
protein molecules and autocorrelation functions will be calculated analytically. To deal with more 
complex models, we will develop a small delay approximation. We compare our results with those 
obtained earlier in [3]. 

As we have learned from the above discussion, the effect of time delays on the stability of various 
dynamical systems depends very much on physical origins of delays. Similar situation appears on a 
larger time scale in population models. The evolution of populations can be often described within 
game-theoretic models [4,5]. The fundamental notion here is that of  an evolutionarily stable 
strategy. If everybody plays such a strategy, then the small number of mutants playing a different 
strategy is eliminated from the population. The dynamical interpretation of the evolutionarily stable 
strategy is provided by a system of differential or difference equations, the so-called replicator 
equations. They describe the time-evolution of frequencies of strategies. It is known that 
evolutionarily stable strategies are asymptotically stable stationary points of such dynamics. 
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Stochastic stability of evolutionarily stable strategies was analyzed in many papers, see for example 
[6,7] and a recent review [8]. 
  
Various aspects of time delays in replicator dynamics in evolutionary game theory were discussed 
recently in [8,9]. Two specific models of two-player games with two strategies and a unique mixed 
evolutionarily stable strategy were analyzed. In the social-type model, players imitate opponents 
taking into account average payoffs of games played some units of time ago. In the biological-type 
model, new players are born from parents who played in the past. We have shown in [9] that in the 
first type of dynamics, the unique mixed evolutionarily stable strategy is asymptotically stable for 
small time delays and becomes unstable for large ones when the population oscillates around its 
stationary state. In the second type of dynamics, however, the evolutionarily stable strategy is 
asymptotically stable for any time delay.  
 
The interplay of stochasticity and time delays in evolutionary game theory and other population 
dynamics models as well as in various models of genetic regulatory networks is a subject of a 
current intensive research.   
 
Acknowledgments: I would like to thank Polish Ministry of Science and Higher Education for a 
financial support under the grant N201 023 31/2069. 
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Abstract 
In various structural design and optimization problems it is necessary to repeatedly evaluate 

the response of the structure for numerous modified designs. Specifically, mechanical and 
geometrical parameters may change and eventually structural components can be added or deleted 
leading also to a change in the number of the degrees of freedom in the pertinent finite element 
model. Since, in general, the response cannot be expressed explicitly in terms of the structure 
properties, any structural modification requires a considerable computational effort. These 
computational mechanics problematic are to the base of the increasing interest in the reanalysis 
techniques in last two decades. Indeed, the aim of the reanalysis is the valuation of the structural 
response of modified systems using the results relative to the original structure, called as reference 
structure, so reducing the computational effort. In this regard the reanalysis techniques are classified 
as topological or non-topological if the modifications lead to a change of the degrees of freedom of 
the system or not.  

Therefore, the reanalysis is able to cope with both static and dynamic response evaluation. A 
review of the static response reanalysis techniques can be found in [1] and more recently in [2], in 
which it is shown that the most common reanalysis methods, namely: the Combined Approximation 
(CA); the Theorems of Structural Variations (TSV) and the Virtual Distortion Method (VDM), can 
be derived from the Sherman-Morrison-Woodbury formula [3,4]. The previous quoted methods can 
be also adopted for topological modifications [5]. A review of the earliest contribution in this topic 
can be found in [6-7]. 

Most of the existing reanalysis methods in dynamics are concentrated on resolving the modal 
problem, in which only modifications to eigenvalues and eigenmodes are considered. This problem 
is solved quasi-statically in the frequency domain (no dependence on time is investigated). A 
review of some eigenproblem reanalysis methods can be found in [7-8]. Recently the authors, 
proposed a method for the dynamic response reanalysis in the time domain [9-10], the method 
evaluates the structural response by the dynamic modification approach [11] without solving any 
eigenproblem. The method can be adopted to evaluate both deterministic and stochastic response. 

In the framework of stochastic mechanics two problems are the object of this study. In the 
first one the reanalysis technique herein proposed is used for Monte Carlo simulations of structures 
with uncertain parameters. Lastly, the presented approach is also applied for the random response of 
linear systems subjected to random loadings. In the former problem several analyses of slightly 
modified systems are required. Indeed for systems with uncertain parameters, if the Monte Carlo 
simulation is adopted, the computational effort is quite onerous. In this regard, the main steps 
involved in a Monte Carlo study require the simulation of a set of random variable from a 
theoretical distribution of structural parameters, the deterministic analysis of the response for each 
set of variables, and the evaluation of the response statistics determined by repeating several times 
the deterministic analysis for each individual new simulation. Clearly, to avoid the very onerous 
required repeated analyses, the deterministic dynamic response reanalysis is computationally very 
useful. In this regard, the Dynamic Modification Method (DMM) proposed in [11] is extensively 
used and resorted to cope with the dynamic response reanalysis in time domain. According to this 
method all the dynamic modifications are assumed pseudo-forces and the response of the modified 
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structure is retrieved starting from the knowledge of the transition matrix and the eigenvectors of 
the original structure.  

Moreover, via this approach the response of nonclassically damped system is determined 
without the evaluation of complex quantities. Lastly, the present approach is also applied to the 
random response of linear systems subjected to random loadings. For simplicity’s sake only the 
case of non topological modifications is considered..  
The numerical results show the accuracy and the computational efficiency of the described 
approach to the analysis of multi-degrees-of-freedom (MDoF) systems. Remarkably, it is also 
shown that the approach is computationally very effective, in order to show this the CPU reduction 
time is evaluated.  
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1. INTRODUCTION

The focus of our paper is the following linear oscillator under both additive and mul-
tiplicative random excitations:

Ẍ + ω0[2ζ + W2(t)]Ẋ + ω2
0[1 + W1(t)]X = W3(t), (1)

where Wj(t)), j = 1, 2, 3, are wideband stationary processes with zero mean values. This
model was studied by Ariaratnam and Tam [1] under the assumption that ζ is of order ε
and the Wj(t)) are of order

√
ε, where ε is a small parameter. By applying the stochastic

averaging procedure, it was argued that the amplitude process A(t) =
(
X2 + Ẋ2/ω2

0

)1/2

is approximately a Markov diffusion process governed by the (Itô) stochastic differential
equation (SDE)

dA = m(A)dt + σ(A)dB(t) . (2)

The drift coefficient m(A) and the diffusion coefficient σ(A) are given by the equations,

m(A) = −αA +
δ

2A
, (3)

σ(A) = (γA2 + δ)1/2 , (4)

in which

α = ζω0 − πω2
0

8

[
2Φ22(0) + 3Φ22(2ω0) + 3Φ11(2ω0)− 6Ψ12(2ω0)

]
, (5)

δ =
π

ω2
0

Φ33(ω0) , (6)

γ =
πω2

0

4

[
2Φ22(0) + Φ22(2ω0) + Φ11(2ω0) + 2Ψ12(2ω0)

]
, (7)

and

Φij(ω) =
1

2π

∫ ∞

−∞
E[Wi(t)Wj(t + τ)] cos(ωτ) dτ , i, j = 1, 2, 3 , (8)

Ψij(ω) =
1

2π

∫ ∞

−∞
E[Wi(t)Wj(t + τ)] sin(ωτ) dτ , i, j = 1, 2, 3 . (9)

1
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Ariaratnam and Tam [1] showed that the expected time 〈Tf〉 to first failure of the ampli-
tude process A(t) is given by the formulas

〈Tf〉 =
1

ηγ

∫ ac

a0

1

u

[(
1 +

γ

δ
u2

)η − 1
]
du , η =

α

γ
+

1

2
6= 0 (10)

〈Tf〉 =
1

γ

∫ ac

a0

1

u
ln

(
1 +

γ

δ
u2

)
du , η = 0 (11)

Here a0 denotes the initial condition and ac the critical level (a0 < ac). This approach
would usually represent an approximation in the sense that failure for the original problem
would typically be when X(t) exceeds a critical threshold xc. An approximate solution
for this is obtained by studying the exceedance of ac = xc by the amplitude process A(t).

Using numerical path integration we have calculated the reliability function associated
with the linear oscillator model in Eq. (1) for a range of parameter values. Since this can be
done for any choice of parameter values, it provides a means of studying the limitations of
the amplitude diffusion model adopted in [1], and thereby also the limitations of stochastic
averaging.

The reliability is defined in terms of the displacement response process X(t) in the
following manner, assuming that all events are well defined,

R( T |x0, 0, t0) = Prob{xl < X(t) < xc; t0 < t ≤ T |X(t0) = x0, Y (t0) = 0}, (12)

where xl, xc are the lower and upper threshold levels defining the safe domain of operation.
It has been shown [2] that

R( T | x0, 0, t0) ≈
∫ ∞

−∞

∫ xc

xl

· · ·
∫ ∞

−∞

∫ xc

xl

n∏
j=1

p(zj, tj|zj−1, tj−1) dz1 · · · dzn, (13)

which is the path integration formulation of the reliability problem. Here, p(z, t|z′, t′)
denotes the transition probability density function of the state space vector process Z(t) =
(X(t), Y (t))T = (X(t), Ẋ(t))T , and tj = t0 + j∆t, j = 1, . . . , n, and ∆t = (T − t0)/n.

The complementary probability distribution of the time to failure Tf , i.e. the first
passage time, is given by the reliability function. The mean time to failure 〈Te 〉 can thus
be calculated by the equation

〈Tf 〉 =

∫ ∞

0

R( τ |x0, 0, t0) dτ (14)

The results obtained by Eqs. (10), (11) and from Eq. (14) by path integration, can then be
compared. This will shed some light on the performance of stochastic averaging methods.

2. REFERENCES

[1] S.T. Ariaratnam and D.S.F. Tam (1979). ”Random Vibration and Stability of a Linear
Parametrically Excited Oscillator.” Z. Angew. Math. Mech., 59(2), 79-84.

[2] D. Iourtchenko, E. Mo and A. Naess (2008). ”Reliability of strongly nonlinear systems
by the path integration method.” J. of Applied Mech., 75(6), 061016.
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Multiscale dynamics and information: some
mathematical challenges

N. Sri Namachchivaya, Kristjan Onu, Jun H. Park and Richard B. Sowers
University of Illinois at Urbana–Champaign

This talk outlines multiscale problems which combine techniques of model reduction and
filtering. Multiple time scales occur in models throughout the sciences and engineering, where
the rates of change of different variables differ by orders of magnitude. The basis of this work is a
collection of limit theories for stochastic processes which model dynamical systems with multiple
time scales. When the rates of change of different variables differ by orders of magnitude,
efficient data assimilation can be accomplished by constructing nonlinear filtering equations for
the coarse-grained signal. We consider the conditional law of the coarse-grained signal given
the observations. In particular, we study how scaling interacts with filtering via stochastic
averaging. We combine our study of stochastic dimensional reduction and nonlinear filtering
to provide a rigorous framework for identifying and simulating filters which are specifically
adapted to the complexities of the underlying multi-scale dynamical system.

State estimation of random dynamical systems with noisy observations has been an important
problem in many areas of science and engineering. Since the true state is usually hidden and
evolves according to its own dynamics, the objective is to get an optimal estimation of the true
state via noisy observations. The theory of filtering attempts to give a recursive procedure for
estimating an evolving signal or state from a noisy observation process. When a system has
several different scales, one can seek reduced order models whose essential dynamics describe
the evolution of the full system with small number of the state variables. In systems subject
to both bifurcations and noise (which form one of the main components of this talk), various
singular perturbations problems must be understood. To this end, reduced models often pro-
vide qualitatively accurate and computationally feasible descriptions. The lower-dimensional
model is strictly valid only in the limit of infinitesimally small noise. Nonetheless, the stochas-
tically averaged model should provide qualitatively correct results and be potentially helpful in
developing inexpensive lower-dimensional computational models.

The first objective of this talk is concerned with certain methods of dimensional reduction of
nonlinear systems with symmetries and small noise [1]. In the presence of a separation of scales,
where the noise is asymptotically small, one exploits symmetries to use recent mathematical re-
sults concerning stochastic averaging to find an appropriate lower-dimensional description of the
system. The unique features of the problem are interactions between bifurcations, resonances,
dissipation and random perturbations. Bifurcations are where small changes in a system result
in large changes in the structure of the fast orbits [2]. The subtleties of the interaction between
these effects will lead to new and novel analytical techniques. Hence, we are developing tech-
niques of stochastic dimensional reduction to find a simpler model which predicts or captures
relevant dynamics of the system [3]. One of the preeminent modern frameworks for considering
convergence of the laws of Markov processes is that of the martingale problem, which we will
use in deriving the coarse-grained dynamics [4].

The second objective of this talk is to develop, with mathematical rigor, a lower - dimensional
nonlinear filter by combining two ingredients, namely, stochastic dimensional reduction dis-
cussed above and nonlinear filtering. We find a reduced nonlinear filtering problem when the
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system dimension can be reduced via homogenization. We approximate the complex original
nonlinear filtering equation by simpler ones with a quantifiable error. This is an extension of
our previous work [5,6] to a more realistic setting where the observation depends on both slow
and fast variables.

In this talk we derive a low-dimensional filtering equation, that determines conditional law of
a plant, in a multi-scale environment given the observations. This talk is less concerned with
specific applications and more focused on some of the theoretical aspects that deal with reduced
dimensional nonlinear filters. In particular, we showed the efficient utilisation of the low-
dimensional models of the signal to develop a low-dimensional filtering equation. We achieved
this through the framework of homogenisation theory which enables us to average out the
effects of the fast variables. Reduced models can be used in place of the original complex
models, either for simulation and prediction or real-time control. To this end, reduced models
often provide qualitatively accurate and computationally feasible descriptions.

In conclusion, we are interested in something of a “nongeneric” system which is not amenable to
direct probabilistic asymptotic analysis, but which has been overlooked in the homogenisation
literature. Another aspect of note is that our interest is specifically dimensional reduction of
the plant, not homogenisation. Our analysis will hinge upon an application of the tools of
stochastic averaging to a study of the Zakai equation.

The authors would like to acknowledge the support of the AFOSR under grant number FA9550-
08-1-0206 and the National Science Foundation under grant numbers CNS 05-40237 and CMMI
07-58569. Any opinions, findings, and conclusions or recommendations expressed in this pa-
per are those of the authors and do not necessarily reflect the views of the National Science
Foundation.
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STOCHASTIC AND CHAOTIC ANALYSIS OF 
SHALLOW CABLES DUE TO CHORD LENGTH ELONGATIONS 

 
 

Søren R.K. Nielsen 
 Aalborg University, Aalborg, Denmark  

 
 

 

Figure 1. Cable in static equilibrium configuration. 

Cable systems are of great interest in a wide range of applications in civil engineering to 
supply both support and stiffness to large structures. Typically, cables are used as support of cable-
stayed bridges, masts and TV-towers are characterized by a sag-tochord-length ratio below say 
0.01, which means that the angular eigenfrequencies for the in-plane eigenvibrations  
and the out-of-plane eigenvibrations  are pairwise close. With reference to the 
coordinate system defined in figure 1 the components of the support point motion in the y and z 
directions merely introduce additive load terms in the modal equations of motion of the cable, 
whereas the chord elongation  along the x-axis causes additional parametric 
loading terms in the modal equations of motion, which may cause significant subharmonic and 
superharmonic responses. The chord elongation is conveniently described by the following non-
dimensional parameter of the magnitude 1  

 

(1) 

 
 
where EA/L denotes the axial stiffness and H is the pre-stressing force. Even though the 

excitation only affects the in-plane motion, stable out-of-plane displacements may be brought 
forward by non-linear couplings in both harmonic, subharmonic and superharmonic responses. 

When the chord elongation and hence  is harmonically varying with the  and the 
angular frequencies  stable stationary periodic motions exist for specific frequency ratios . 
Figure 2a shows the trajectory of the midpoint of the cable for subharmonic response of order 2 for 

. As seen, the in-plane modal coordinate  is rather small and harmonically moving 
with the same frequency as the excitation, whereas the out-of-plane coordinate  is large at 
subharmonic resonance with a frequency equal to half the excitation frequency. The stable 
trajectory is brought forward by a phase locking between the in-plane and out-of-plane components. 
However, in reality the chord elongation is narrow banded stochastic rather than harmonic varying, 
driven by the narrow-banded random response of the supported structure. In this case the 
subharmonic response of the cable changes dramatically, qualitatively and quantitatively, no matter 
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how small the bandwidth of the excitation is. As shown in figure 2b, the in-plane and the out-of-
plane components are coupled forming a elliptic like trajectory with slowly varying inclination and 
magnitude of the semi-axes. 
 

The response is defined as chaotic with probability one, if two realizations with close initial 
values exposed to the same but arbitrary realization of the chord elongation process deviate 
exponentially with time. The exponential growth rate is measured by the Lyapunov exponent, 
which here is estimated numerically by the algorithm of Wolf et al. Chaotic behaviour occurs for 
sufficiently large standard deviation of the excitation process. In the paper stochastic chaotic 
response is investigated for subharmonic response of order two, and superharmonic response of the 
orders 3/2 and 2. It is demonstrated by means of Monte Carlo simulation that in all the indicated 
cases the tendency to stochastic chaotic behaviour is increased for increased standard deviation and 
increased bandwidth of the excitation process is increased. Further, the magnitude of the out-of-
plane displacement is also dependent on the bandwidth, and ceases completely above a certain 
critical bandwidth parameter. Finally, it is demonstrated that stochastic excitation processes with 
the same auto-spectral density function, but different higher moments provide qualitatively identical 
stochastic ordered and chaotic responses, i.e. the dramatic influence of the stochastic excitation on 
the response is basically caused by the second order moments. 

References 
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Figure 2. Subharmonic response of order 2. a) Harmonic varying chord elongation. b) Stochastic 
chord elongation. 
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1. Objective 

This work deals with the problem of estimating damage accumulation and predicting the 
lifetime due to fatigue in the entire body of a metallic structure using output-only vibration 
measurements from a sensor network installed at a limited number of locations in a structure. The 
objective is to formulate the problem, present the methods and assumptions under which effective 
fatigue predictions can be accomplished, outline the main issues and factors that affect the accuracy 
of the predictions, as well as illustrate the effectiveness of the methods with selected applications 
using simulated measurements.  

2. Introduction 

Damage accumulation due to high-cycle fatigue is an important safety-related issue in 
metallic structures. Methods exist to estimate the damage accumulation at a point in a structure 
using the response time histories of the components of the stress sensor at the corresponding point. 
One such method integrates experimentally obtained S-N fatigue curves for damage prediction, 
Miner linear damage accumulation law accounting for arbitrary stress response time histories, cycle 
counting per stress level methods in stress response time histories, and methods for handling multi-
axial stress states at a point. These methods can be applied to any point in the structure and 
construct the complete fatigue map of the entire structure, provided that the stress response time 
histories at all desirable points are available.   

The characteristics of the stress response time histories at a point in a structure can readily be 
predicted by using a model of the structure (e.g. a finite element model) and the actual excitation 
time histories. However, for most structures, the excitation time histories are neither available nor 
can be conveniently measured by a system of sensors, while simplified representations of excitation 
models often used for design purposes do not reflect the actual excitation conditions during various 
phases of operation of the structure. In addition, the models of the structure may lack the desirable 
accuracy due to model error. Alternatively, the stress response time histories at a structure can be 
readily inferred using measurements obtained by placing strain rosettes. Even in this case, there are 
significant limitations in predicting the stress time histories in the entire body of the structure since 
the number of sensors in a sensor network is usually very limited and cannot cover all points or 
critical structural locations. Moreover, structural locations may not be all approachable to place 
sensors (e.g. hard to reach structural locations in large extended structures, submerged structures, 
heated structural components, internal points in a structure).  

This work concentrates mainly on proposing methods for predicting the characteristics of the 
stress response time histories in the entire body of the structure using measurements collected from 
a sensory system placed at limited number of structural locations. Such predictions can be 
employed for estimating damage accumulation maps due to fatigue.  The excitation in the structure 
during its operation is considered to be unknown. The main assumptions for the proposed 
predictions are that the structure is linear, the responses are realizations of a stochastic stationary 
process, and the unmeasured excitations can be modelled by stationary stochastic processes.  
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3. Methodology 

Available frequency domain stochastic fatigue methods based on Miner’s damage rule, S-N 
fatigue cycle curves, and Dirlik’s probability distribution of the stress range are used to predict the 
expected fatigue accumulation of the structure in terms of the power spectral density (PSD) of the 
components of the stress tensor process [1,2]. Thus, the problem is reduced to estimating the PSDs 
of the stress components at unmeasured locations using the available measured response time 
histories at limited locations of the structure. These PSDs of stresses are estimated by using 
stochastic representations of the excitation models, Kalman filter techniques [3] or kriging methods. 
The accuracy of the predictions in such methods under unknown stochastic excitations depend 
highly on the accuracy of the stochastic process models used to represent the uncertain temporal 
and spatial characteristics of the excitation time histories, as well as the accuracy of the models 
used to represent the structural behaviour. Model identification methods are proposed to estimate, 
based on the vibration measurements, reliable stochastic models of the uncertain excitations, as well 
as update the structural models. In particular, it is demonstrated that optimal sensor configuration 
strategies are useful tools for improving predictions.   

4. Results and Conclusions 

The proposed formulation is demonstrated using simulated measurements from (a) an N-DOF 
spring-mass chain model arising from structures that consist of members with uniaxial stress states 
and (b) a three-dimensional structure that is modelled by shell/plate elements with bi-axial stress 
states. The factors that affect the accuracy of the methodology are investigated by comparing the 
fatigue accumulation results in the entire structure predicted by the proposed methodology with 
reference fatigue accumulation results. It is shown that the accuracy of the proposed method for 
fatigue predictions in the entire body of the structure depends on the number and location of sensors 
in the structures, the number of modes contributing in the dynamics of the structure, the size of the 
model error and measurement error, and the accuracy of the stochastic excitation models.  

The proposed methodology can be used to construct fatigue damage accumulation and 
lifetime prediction maps consistent with the actual operational conditions provided by a monitoring 
system. In particular, the stochastic excitation models identified from measurements under various 
operational states, can also be used with the stochastic fatigue method for lifetime prognosis 
purposes. The proposed method is useful for designing optimal fatigue-based maintenance 
strategies for metallic structures using structural vibration information collected from a sensor 
network.  
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1. Introduction 

  In Engineering field  several actions are random in nature and then estimation of the response, 
of linear or nonlinear systems under these agencies, has to be developed through statistics. As well 
known random excitations may be simulated by two kinds of noises: normal and non-normal white 
noises. For systems under normal or non-normal white noise, the response statistics may be 
obtained by solving the Fokker-Plank Kolmogorov (FPK) equation or the kolmogorov-Feller 
equation, respectively. However, exact solutions of the partial differential equations governing the 
evolution of the response probability density function (PDF) are known only for very few cases. 
Alternatively, several approximate solutions techniques have been developed including variational 
methods, finite element method , and the path integration approach . The path integral solution 
(PIS) is an effective tool for evaluating the response in terms of PDF at each time instant [1-4].  

2. General Features on Path Integration method 

For summarizing the general features of the (PIS) method, it is better resorting to the case of a half 
oscillator driven by a white noise, whose equation of motion is given in the form: 

(1)        
0

X( ) X( ) (X, ) ( )
X(0) X

t t f t W t⎧ = −α + +
⎨

=⎩

&
                                                                                               

where ),X( tf  is a deterministic nonlinear function of X(t) and t,α  is a parameter that must be 
positive and W(t) is a white noise (zero-th order memory Markov process) and 0X  is the attendant 
initial condition (deterministic or  random variable). The PIS allows us to capture the entire 
evolution of the response process in terms of PDF, having an assigned initial condition.  

The starting point is the Chapman-Kolmogorov equation, that holds true, because of the 
Markovianity of the input and of the response: 

 

(2)          xtxtxτtxτtx
D

)d,(p),,(p),(p XXX ∫ +=+                                                              

The latter, for τ small may be interpreted as a step-by-step procedure, that means, if we suppose 
that the PDF of the response at the generic time instant (t) is already known, we may evaluate the 
PDF of the response at the close time instant ( τ+t ). Regarding the numerical implementation of the 
PIS method a computational domain D has to be selected. It is convenient to select a symmetrical 
computational domain with a maximum size equal to 1x , i.e. 1 1x x x− ≤ ≤ . The size of the domain is 
identified by, first, running a Mont Carlo Simulation (MCS) with a low number of samples. Then, 
dividing the domain in a number nx of intervals, for each grid point, the path integral from Eq. (2) 
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can be evaluated. By looking at this equation (2) it is apparent that the crucial point is to evaluate 
the kernel, where a conditional joint PDF is present. Considering the physical significance of this 
conditional joint PDF that is: from the whole trajectories of the response process X(t) ,we take those 
assuming in t the deterministic value x , hereafter labelled )(X ρ solution  of the following 
differential equation: 

 (3)           X( ) X( ) (X, ) ( )
X(0)

f W t
x

ρ α ρ ρ ρ⎧ = − + + +⎪
⎨

=⎪⎩

&
   

                                                                                                            
being x  a deterministic initial condition and 0 τρ≤ ≤ . It is worth stressing that: the CPDF of Eq.(1) 
coincides with the unconditional PDF of Eq.(3a) evaluated in τ , that is 
 

(4)              X Xp ( , , ) p ( , )x t x t xτ τ+ =                                                                                     

These are the general features of PIS, now the problem is to particularize the kernel and this will be 
dependent on the system and on the type of white noise.  

 It will be introduced an excursus to asses how versatile is PIS for evaluating probabilistic 
response of linear and nonlinear systems. Firstly the case of systems under normal white noise will 
be examined, secondly the case of systems under Poissonian white noise and lastly the case under 
combined noises that is normal and non-normal white noises acting simultaneously. The accuracy 
of the method  is assessed  using Monte Carlo simulation and the exact solution when the latter is 
available. 
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 Significant wave height Hs is defined as four times standard deviation of the wave field and 
hence  Hs squared is a measure of the average wave energy. The accumulated damage in ships can 
be related to the history of encountered significant wave heights. Fatigue routing means planning 
shipping so that the accumulated damage would be minimized. 
  

In this talk we shall present a model for  space time variability of significant wave heights 
over oceans. The model will be used to predict the fatigue damage caused by sea waves to  
structural details in a ship. The resulting distribution will be compared with the empirical one 
derived from an extensive measuring campaign.  
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GLOBAL SENSITIVITY OF STRUCTURAL VARIABILITY BY RANDOM SAMPLING
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Innsbruck/Austria-EU Tel: +43 512 507 6841 Fax:+43 512 507 2905
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1. GENERAL REMARKS

Mathematical models play an increasingly important role to simulate, study and predict
future outcomes in every field of science. These models, generally, involve a large set of input
variables (whose values are often imprecisely known). With problems of this type, it is impor-
tant to understand the relationships between the input variables and the output. Sensitivity
analysis (SA) allows one to study these relationships and identify the most significant factors
or variables affecting the results of the model. The global SA methods can also be used for
model calibration, model validation, decision making process, i.e., any process where it is useful
to know which are the variables that mostly contribute to the output variability.

Let define the model f : <p → < and Y = f(X) that can also be considered as a “black
box” where Y is the output of model and X = X1, . . . , Xp are p-independent inputs. The
effect of the variance of an input or a group of input parameters contributes to the output
variance of f are described using the so-called Sobol’s indexes. For a model with p inputs, the
number of Sobol’s indices is 2p − 1; leading to an intractable number of indices as p increases.
Thus, to express the overall output sensitivity to an input Xi, the total sensitivity index,
STi

= Si +
∑

j 6=i Sij +
∑

j 6=i,k 6=i,j<k Sijk + . . . , can be used [1]. Recent global SA techniques take
into account the entire range of variation of the inputs and aim to apportion the whole output
uncertainty to the input factor uncertainties (see e.g [4]).

Working in a standard normal space (obtained by means of e.g. the Nataf transformation),
where the factors x1, . . . , xp are independent standard normal random variables, it has been
shown [5] that the total sensitivity indexes has the following upper bound:

(1) Stot
i ≤

νi

D
=

∫
Hp

(
∂f
∂xi

)2

dx

D

where D is the total variance of f , νi are functions similar to the Morris importance measures [2]
and Hn represents the standard normal space of dimension p. The estimation of νi can be
performed by simple Monte Carlo (independent random samples) simulation.

The major drawback of this approach is that it may be CPU time consuming, mainly
because of the sampling method. In case the total sensitivity is evaluated for all p components,
the cost to estimate p total sensitivity indices is Nt = N(p + 1). It is well known that, for
complex computer models, an accurate estimation of these indexes by the simple Monte Carlo
method requires N > 1000. In complex industrial applications, this approach is intractable
due to the CPU time cost of one model evaluation and the possible large number of input
parameters.

2. PROPOSED APPROACH

The aim of this paper is to present an efficient Monte Carlo based approach for the
estimation of the upper bound of Stot

i where n� N samples are required to estimate the (upper)
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bound of each index. The main idea is to estimate the gradient components of a generic function
by means of a Monte Carlo procedure along the points sampled from a Markov-chain. It has
been shown [3] that adopting an orthogonal linear transformation it is possible to identify a
new coordinate system where a relatively small subset of the variables contributes significantly
to the gradient. Working in this transformed space only few samples, i.e. much less than
the dimensionality of the problem, are required in order to estimate the gradient components,
∂f
∂xi

. The ideal rotation requires the knowledge of the gradient at the same point; however an
approximate rotation can be performed by adopting, for instance, the values of the gradient
evaluated in the previous point of the Markov chain. It is, nonetheless, correct to state, that
in most applications only a small subset of parameters is likely to cause most of the response
variability, whereas a large part of parameters will have an insignificant effect on the solution,
i.e. the gradient has few dominant components.

At each point of the Markov chain, the gradient is not determined directly, as it is the case
for finite difference procedures or direct differentiation procedures, but by random sampling in
the close neighbourhood of the current chain point, x = x̃. The following function difference,
b(j)(x̃) = f(x̃ + γ ·R(j))− f(x̃) is then computed from simulation where the parameter γ > 0
controls the width of scatter points x(j) around the reference point x̃ and R is a vector full of
i.i.d. standard normal random variables. The components of the derivative at the point x̃ are:

(2) d
(j)
k (x̃) =

∂f(x)

∂xk

∣∣∣∣
x=x̃

≈ b
(j)
k (x̃)

γ ·R(j)
k

The most important gradient components can be estimated from certain statistics as shown in
Ref [3]. Finally the following estimators can be used to calculate the functional νi as well as
the Morris importance measures, µi:

(3) νi =

∫
Hp

(
∂f(x)

∂xi

)2

dx ≈ 1

Nchain

∑
j

(
b
(j)
k (x̃)

γ ·R(j)
k

)2

; µi ≈
1

Nchain

∑
j

| b
(j)
k (x̃)

γ ·R(j)
k

|

where Nchain represents the length of the Markov chain with the points distributed according
the multivariate normal distribution.

In conclusion, this approach allows a significant reduction of the computational efforts
required to perform the global SA especially for applications involving a high number of vari-
ables.
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ABSTRACT 
 
 An approximate formula which utilizes the concept of conditional power spectral density (PSD) 
has often been employed to determine the response PSD of stochastically excited nonlinear 
systems.  Although this expression has been used in numerous applications, its derivation has been 
so far treated in a rather heuristic, even “unnatural” manner.  Indeed, the formula is based on the 
notion of the conditional PSD, and its mathematical legitimacy has been based on somewhat “arm-
waving” arguments.  In this paper, a perspective on the legitimacy of this formula is provided by 
utilizing spectral representations both of the excitation and of the response processes of the 
nonlinear system.  The orthogonality properties of the sinusoidal functions which are involved in 
the representations are utilized.  Furthermore, not only stationarity but ergodicity of the system 
response is invoked.  In this context, the nonlinear response PSD can be construed as a 
superposition of the PSDs which correspond to equivalent response amplitude dependent linear 
systems.  Next, relying on classical excitation-response PSD relationships for these linear systems 
leads, readily, to the derivation of the formula for the determination of the PSD of the nonlinear 
system. 
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1. Background 
Structural health monitoring (SHM) provides the means for capturing structural response and 

assessing structural condition for a variety of purposes.  For example, the information from an SHM 
system can be used to fine-tune idealized structural models, thereby allowing more accurate 
prediction of the response due to extreme loading conditions, such as earthquakes and typhoons.  
SHM also can be used to characterize loads in situ, which can allow the detection of unusual loading 
conditions as well as validate the structure’s design.  In addition, real-time monitoring systems can 
measure the response of a structure before, during and after a natural or man-made disaster, and may 
be used in damage detection algorithms to assess the post-event condition of a structure.   

Given the size and complexity of many civil structures, a large network of sensors is usually 
required to adequately assess the structural condition.  Traditional structural monitoring systems have 
been moving in the direction of dense deployment in recent years; however, the cost of installation 
can be thousands of dollars per sensor channel, and the amount of data generated by such a system 
can render the problem intractable.  Networks of wireless smart sensors have the potential to improve 
SHM dramatically by allowing for dense networks of sensors employing distributed computing to be 
installed on a structure.  As defined herein, a smart sensor is a battery-powered sensing node with a 
micro-processor, memory, and a radio transmitter.   

While smart sensor technology has been commercially available for nearly a decade, full-scale 
implementation has been lacking with the exception of a few short-term demonstration projects [1,2].  
This slow progress is due primarily to (i) the lack of an adequate sensing platform and (ii) the fact that 
programming smart sensors is extremely complex, putting the use of these devices for all but the 
simplest tasks out of the reach of most engineers.  Moreover, critical issues inherent in wireless smart 
sensor networks (WSSNs), such as synchronized sensing and data loss, must be addressed.  In 
addition, the numerical algorithms required for system identification and damage detection must be 
implemented on sensor nodes which have limited resources.  The result is that SHM applications 
require complex programming, ranging from network functionality to algorithm implementation.  
Applications software development is made even more difficult by the fact that many smart sensor 
platforms employ special-purpose operating systems without support for common programming 
environments.  The extensive expertise required to develop SHM applications has severely limited 
the use of smart sensing technology. 

This paper presents an open-source hardware and software framework for structural health 
monitoring using WSSN.  This framework provides the infrastructure necessary to obtain 
high-quality response data and to transport it reliably across the sensor network, as well as a broad 
array of SHM algorithms (see http://shm.cs.uiuc.edu/software.html).     

2. Wireless smart sensor platform 
The wireless smart sensor platform used in this research is the Imote2 (see Fig. 1), which is 

uniquely-suited to the demands of SHM applications.  It has a low-power X-scale processor 
(PXA27x) with variable processing speed to optimize power consumption.  It incorporates a ChipCon 
2420 802.15.4 radio with an onboard antenna (Antenova Mica SMD).  The onboard memory of the 
Imote2 is one of the features that sets it apart from other wireless sensor platforms and allows its use 
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for the high-frequency sampling required for dynamic structural monitoring.  It has 256 KB of 
integrated RAM, 32 MB of external SDRAM, and 32 MB of flash memory.  

A new, versatile sensor board to interface with the Imote2 has been designed that is tailored to 
the requirements of SHM applications (see Fig. 1).  This SHM Accelerometer board (SHM-A) allows 
3 axes of acceleration measurement with user programmable anti-aliasing filters.  This sensor board 
has excellent sampling rate accuracy and flexibility.  Current versions of the board have incorporated 
temperature, light and humidity sensors to provide information that is critical in establishing a 
comprehensive assessment of the structural condition. 

3. Service-oriented software framework 
With the exponential growth in available computing power over the last 50 years, the 

complexity of computer software has likewise increased dramatically.  Advances in the fields of 
programming language design and software engineering allow application developers to deal with 
this complexity by dividing the software system into smaller, manageable parts.  Following this 
approach, enabling services and service‐based applications specifically designed for the address the 
challenges of using smart sensors for structural health monitoring have been developed and made 
available at the Illinois SHM Project website ([2]; also see http://shm.cs.uiuc.edu). 

3. Jindo bridge deployment 

To demonstrate the efficacy of the 
proposed framework, results are presented for a 
WSSN deployment on the new Jindo Bridge, a 
cable-stayed bridge in South Korea with a 344m 
main span (see Fig. 2).  This tri-lateral 
collaboration between University of Illinois, 
KAIST, and the University of Tokyo constitutes 
world’s largest deployment of wireless smart 
sensors (70 nodes with 420 sensors) to date for 
civil infrastructure monitoring.  This project 
signifies a new paradigm for structural health 
monitoring that is leading to dramatic 
improvements over existing capabilities.    

4. Conclusions 

Leveraging this hardware/software framework allows engineers to focus attention on 
advancement of SHM approaches and the development SHM systems without having to concern 
themselves with low-level networking, communication, and numerical sub-routines. 

5. References 
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Figure 1. Twin spans of Jindo Bridge with the 
newer span on the left. 
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1. Introduction 

In the presentation a coupled response-degradation problem for a multidimensional vibrating 
system is analyzed. The analysis allows to account for the effect of stiffness degradation (during the 
vibration process) on the response and, in the same time, gives the actual stress values for 
estimation of damage accumulating in the system.  

As is well known, dynamics excitation of engineering systems (including randomly varying 
excitation) causes variable stress generated in mechanical/structural members and, in the 
consequence, irreversible changes amplitudes in the material structure. These changes, known as 
damage accumulation, may have different physical content. But, despite the diversity of underlying 
physical/mechanical phenomena, it is useful to describe them jointly within a single model relating 
the rate of damage evolution at time with applied stress. Models of this type operate with a certain 
damage measure D t( ), which characterizes a damage state at time t. It is usually assumed that D t( ) 
is on the interval [ , ]*0 D , where D*  denotes a critical damage, and that is a non-decreasing function 
of time. In some situations (e.g. in the case of fatigue accumulation) external actions and generated 
stresses can be conveniently related to discrete values of time (e.g. by N, the number of cycles). 
 Since the variable stress causing damage (and, in the consequence, stiffness degradation) are 
generated by a vibratory system it is natural to formulate jointly the system dynamics and damage 
accumulation. Such an analysis allows to account the effect of stiffness degradation during the 
vibration process on the response and, in the same time, gives the actual stress values for estimation 
of damage.  
 
2. General formulation 
 
The coupled response-degradation problem can be formulated in the following form: 
 

0]),(),(),([)( =+ γtttt XDYFY&&                (1) 
 

0])(),([ =tt YDQ                  (2) 
 

000000 )(,)(,)( DDYYYY === ttt &&                (3) 

 
where )(tY  is an unknown response process, )(tD  is a degradation process, [.]F  is the given 
function of indicated variables satisfying the appropriate conditions for the existence and 
uniqueness of the solution, ),( γtX  is the  given stochastic process characterizing the excitation; 
γ ∈Γ , and Γ  is the space of elementary events in the basic scheme ( , , )Γ B P  of probability theory, 

[.]Q  symbolizes the relationship between degradation and response process; its specific 
mathematical form depends on the particular situation; 000 ,, DYY &  are given initial values of the 
response and degradation, respectively. 
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An important special class of the response-degradation problems is obtained if relationship (2) takes 
the form of differential equation, that is, equations (1), (2) are  
 

0]),(),(),([)( =+ γtttt XDYFY&&                (4) 
 

])(),([)( ttt YDGD =&                (5) 
 
where G is the appropriate function specifying the evolution of degradation; its mathematical form 
is inferred from the elaboration of empirical data, or - it is derived from the analysis of the physics 
of the process. In equation (5) dependence on )(tY  can be in general  regarded in more  relaxed 
sense than it is usual. Degradation rate )(tD&  may depend on the actual values of )(tY , but it can 
also depend on some functionals of )(tY ; for example - on the integral of ],[),( 0 tt∈ττY . In 
considered here damage degradation problems the damage measure )(tD  depends on the stress 
range i.e. quantity related to minmax YY − .  
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1. Introduction 

Dynamic stability of distributed systems has been an object of considerable attention over the 
past half of century. Numerous papers are available of isotropic and laminated beams, shafts, plates 
and shells under periodic and random forces. Most of papers have applied finite dimensional or 
modal approximations in analysis of vibration and stability. The Liapunov direct method  is a quite 
different approach and can be successfully used to analyze continuous systems described by partial 
differential equations. A significant advantage is offered by the method in that the equations of 
motion do not have to be solved in order to examine the stability. An application of nonlocal 
continuum model to representative problems of nanotechnology was demonstrated in [1]. A model 
based on nonlocal continuum mechanics was applied to solve the buckling of multiwalled nested 
carbon nanotubes [2]. The detailed study on the flexural wave dispersion in single-walled nanotubes 
on the basis of beam models in a wide range of wave numbers was presented [3]. It was shown that 
the vibration analysis results based on nonlocal  mechanics are in agreement withthe experimental 
reports in the field [4]. Based on the Donnel-Vlasov shell theory a double- elastic shell model was 
presented for the parametric vibrations of double-walled carbon nanotubes under time-dependent 
membrane forces of thermal origin [5]. The paper is concerned with the stochastic parametric 
vibrations of micro- and nano-rods based on Eringen’s theory and Euler-Bernoulli beam theory 

2. Problem formulation 

The theory of nonlocal continuum mechanics assumes that the stresses at a given reference 
point are functions of the strain state of all points in the body. In this way the internal length scale 
enters into constitutive equations as a material parameter. Adopting Eringen’s nonlocal elasticity 
[6] the nondimensionalized dynamic equation of a short nanotube has the form 

(1)  ( )( ) ( )( )[ ] 022 ,,,,,,, =++++++++ xxxxotxxttxxxxxxxxottt wtffwwwwtffww βεβ  

where ε  - the nondimensional small scale parameter, w  -  the transverse beam displacement, β  - 
viscous damping coefficient, of - constant axial force, ( )tf - time-dependent component of axial 
force. The instability problem is solved for simply supported edges. The trivial solution of Eq. (1) is 
almost sure asymptotically unstable if the measure of disturbed solution tends to infinity with 
probability 1.  

3. Stability analysis and results  
In order to examine instability we construct the energy-like Liapunov functional of the form   

(2)  [ ( ) ( ) ]dxwwfwwwvvwvwvV xxxoxxxx
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If the classical condition for static buckling is fulfilled the functional (2) is positive-definite and a 
measure of distance can be chosen as the square root of functional. If trajectories of  the forces are 
physically realizable processes the classical calculus is applied to calculation and we have 
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(3)  UV
dt
dV 22 +−= β  

 
where an auxiliary functional is known. In order to find a function λ satisfying inequality 
 
(4)  VU λ≥  
 
In order to find  λ  we solve Euler auxiliary problem and obtain the first order differential 
inequality with respect to functional V . The sufficient condition of the almost sure instability is as  
follows 
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where    - mathematical averaging. Based on the formulation obtained instability domains are 
calculated.  
 

 
 

Figure 1. Changes of instability domains with dimensionless scale parameter ε . 
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ON MY ADVENTURES WITH STOCHASTIC MECHANICS 
 
 

K. Sobczyk 
Institute of Fundamental Technological Research, Warsaw, Poland  

 
 
 

When we pass 70 years of our life, even though we do not think 
that it is something extraordinary, some retrospective thoughts naturally 
come to our mind. They are stimulated by a simple observation that 
things around have changed tremendously in comparison with our 
experiences fifty or even twenty years ago. As the professional aspect is 
concerned, one has to realize that the formal employment is, in fact, 
over. So, one has to accustom to another role in the society – 
symbolized by a new “title”: emeritus. At this new stage of life it is not 
very likely that someone will encourage you to new challenges since the 
youngsters are believed to have greater capability. One should look for 
other, and perhaps – easier things to do. No doubt that reflections on the 
past are easier. 

 
 
In the story below I wish to tell a reader – how it happened that I joined my life with 

stochastics, and more specifically – with stochastic mechanics. I also wish to mention some 
“events” on my professional road which made my life interesting.  

 
When in 1960 I graduated from the Department of Mathematics & Physics of the Warsaw 

University (with the masters degree in mathematics) I got a job in the research institute for energy 
supply (Instytut Energetyki) in Warsaw. However, after few months I felt that this place did not 
give me sufficient satisfaction, so I kept my eyes open to find another place for my professional 
development. Once in the spring 1961 one of my colleagues from the University phoned me and 
said that the Institute of Fundamental Technological Research of the Polish Academy of Sciences 
(particularly: Prof. S. Kaliski working in dynamic elasticity theory and related fields) was interested 
in fresh graduates (with master’s degree) for doctoral studies. This message delighted me. After few 
months (since July 1, 1961) I had become a graduate for Ph.D. in the Institute named above (in 
which I have been working up to now). 

 
In the first few months within my doctoral study my duty was to study mechanics, some 

branches of physics, theory of wave propagation and some other topics. One day (probably about 
the spring 1962) Professor S. Kaliski in short conversation with me (he was a busy and rather a 
formal man) said something like that: “it is a proper time you started to work on a specific problem 
which may lead you to Ph.D. degree; in this Institute nobody works in stochastic applications, but 
this is an important and promising topic”. And then he continued “the problem I have for you is the 
following: imagine that you have an elastic wave incident at randomly rough surface which 
separates two different elastic half-spaces. Since the surface is randomly rough the wave will scatter 
and the scattered wave field will be random. So your task is to solve the problem of scattering of 
elastic wave at random surface. Later you may also think on the scattering of the Rayleigh surface 
waves at randomly rough boundary of an elastic half-space”. 
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As I can recollect today, it was probably the most stressful conversation in my life and … a 
perspective for a very hard time through all coming weeks and months (!). Even the simplest 
questions which I asked myself in the first weeks and months (in 1962) after this “conversation” 
were terrible. For example: what does it mean “random surface” ? How can one understand 
randomness of a scattered wave field? In the language of mathematics I have a random/stochastic 
boundary value problem for the elasticity theory equations – how can one formulate properly such a 
problem? In addition, there was nobody around with whom I could discuss my questions and … 
share my frustrations. However, there is no doubt that the problem posed by Prof. Kaliski was not 
only challenging but also intriguing, attractive and important for applications. 

This was the beginning of my way to stochastic mechanics!  
 
A reader of this story can easily imagine that my work on the doctoral problem required much 

effort. It was also a time of continuous studying the analogous problems occurring in radiophysics, 
geophysics, acoustics. Searching for analogies has always been a power of science. In the middle of 
1965 my doctoral thesis was nearly completed and its public defence took place in May 1966. This 
was a great relief; especially that at the same time (August 1965) I met Anna who one year later 
became my wife. So, my life entered a new, exciting and happy stage lasting until today. 

 
The work on doctoral thesis introduced me into a wider circle of problems, namely – 

stochastic wave propagation which has become my field of research during quite a long time (until 
early 1980-ties). I extended my interest to the problems of wave propagation in random media. 
Such problems are mathematically modelled by the partial differential equations with random 
coefficients, or – treated in a different way when the wave transmitting medium is a composition of 
a matrix medium and randomly distributed inclusions (this topic was a subject of my habilitation in 
1974; main results were published in Acta Mechanica, 1976). An important “event” in my life 
associated with stochastic waves was my research fellowship to the USA in the academic year 
1970/71, especially, my stay in the Courant Institute of Mathematical Sciences of New York 
University. It was really exciting and challenging to live in New York city and be a fellow of this 
excellent mathematical institute with many famous names including Courant himself, K. Friedrichs, 
P. Lax and J.B. Keller who in sixties published the best papers on wave propagation in random 
media. 

 
About the end of seventies/beginning of eighties (of XX-th century) I had noticed that the 

stochastic wave propagation is not the only field of my scientific interest. Also, I felt that perhaps, I 
should turn my research more to the main stream of research in the Institute (which was mechanics 
of materials and structures). It happened that I already was somehow prepared to such a change. 
The academic year 1975/76 I spent, as a Talbot–Crosbie research fellow, in the Department of 
Mechanical Engineering of Glasgow University working with Professor J.D. Robson and Dr D.B. 
Macvean on random vibration of road vehicles travelling with varying velocity. The topic of 
random vibration fitted to my interest in stochastic differential equations, whereas degrading effects 
of dynamics, such as fatigue were important for the reliability of engineering materials and 
structures. 

 
I think I should add here that at the same time I was afraid of “loosing” my quite an extensive 

knowledge and research experience in the analysis of wave propagation. So, around 1980 I decided 
to write a book which would summarize my and other existing results on stochastic waves. Such a 
book was published in Polish in 1982 (“Fale Stochastyczne”, PWN, Warsaw) and its extended 
version – in English: “Stochastic Wave Propagation”, Elsevier, 1985. Undoubtedly, this was a good 
decision; work on this book gave me much intellectual satisfaction and to some extent made my 
name recognizable. 
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So, starting from early eighties my research interest has almost entirely been concentrated on 

my new field: stochastic dynamics of engineering systems and random fatigue of materials. This 
field having been quite new and attractive about thirty years ago, still remains a lively and 
important subject of scientific endeavour. My long work in this domain has brought me much joy 
and intellectual satisfaction; it also allowed me to participate in the international research 
collaboration. 

 
It is not my intention to write here about all my exciting connections with various research 

institutions and many professional colleagues. However, I feel I should make some exceptions. 
First, I wish to mention my visiting professorship at the Technical University of Denmark 

(Lyngby) in 1985 due to the invitation of Professor Ove Ditlevsen; it was great to do joint research 
with Ove, to lecture on stochastic differential equations for applications and to write the Lecture 
Notes on this topic (nicely published at Lyngby), which later – modified and extended – were 
published as the book “Stochastic Differential Equations with Applications to Physics and 
Engineering”, Kluwer, Dordrecht, 1991. 

 
The second important “event” is my long-standing, very effective collaboration with 

Professor Billie F. Spencer at the University of Notre Dame (Indiana – USA). This collaboration 
started in 1990 when I was offered there the Melchor Endowed Visiting Professorship for 1990/91. 
Later I held – the Massman Visiting Professorship for the academic year 1997/98. In the meantime 
(1993-97) we did research with Bill on random fatigue within the joint USA – Poland research 
project of Maria Skłodowska-Curie. This decade of joint work resulted in several research papers 
and two books: Sobczyk K., Spencer B.F., “Random Fatigue: from Data to Theory”, Academic 
Press, Boston, 1992; Sobczyk K., Kirkner D.B., “Stochastic Modelling of Microstructures”, 
Birkhauser, Boston, 2002. This long time of collaboration was really a great experience for me 
both, professionally and socially. 

 
And, finally, writing about my ties with the USA science I wish to mention my very close 

relations with Professor Y.K. Lin – a renowned scientist in stochastic dynamics leading, during 
above than twenty years, the Stochastic Research Center at the Florida Atlantic University (Boca 
Raton). Those who have met Mike (a popular first name of Y.K. Lin) are impressed by his great 
culture and honesty in the scientific work. My two visits to Boca Raton (in 1988 and 2004) as the 
invited visiting professor were scientifically highly valuable and enjoyable. 

The second “channel” of my ties with the international research activity was the scientific 
conferences. Presentation of my research work at various scientific meetings has given me a strong 
feeling of the unity of science – in spite of various human experiences. The conferences which I 
regard as especially rewarding for me were the following: the Workshop at Lyngby (1982) 
organized by Professor Ove Ditlevsen; the Weibull Memoriam – IUTAM Symposium in Stockholm 
(1984) organized by Professors S. Eggwertz and N.C. Lind; the IUTAM Symposia on Stochastic 
Dynamics: in Igls/Insbruck (1987) organized by Professors G. Schuëller and F. Ziegler; in Torino 
(1991) organized by Professors N. Bellomo and F. Casciati, and in Trondheim (1995) organized by 
Professors A. Naess and S. Krenk; the “Spanos conferences” on Stochastic Computational 
Mechanics organized by Professor P. Spanos (Athens – 1994, Santorini – 1998, Corfu – 2002); the 
conferences in the USA, e.g. in Blacksburg – Virginia (1988) organized by Professors R.A. Heller 
and M.P. Singh, in Denver – Colorado (1992) organized by Professors R.B. Corotis and Y.K. Lin, 
in Worcester – Massachusetts (1996) organized by Professor M.N. Noori, in Notre Dame – Indiana 
(1998) organized by Professors B.F. Spencer and E.A. Johnson; and finally: the conference on 
Nonlinear Mechanics and Stochastic Dynamics in Waterloo – Canada (1993) organized by 
professors: W. Kliemann and S.Namachchivaya. 
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Stochastic dynamics of engineering systems was also a subject which I had a honour to 
present in the highly prestigious invited plenary lecture at the XXI-st World IUTAM Congress of 
Theoretical and Applied Mechanics, Warsaw, 2004 (organized by professors: W. Gutkowski and T. 
Kowalewski). 

 
However, this what has been especially wonderful during all this long time was my deep 

feeling that the world community on Stochastic Mechanics constitutes a unique group of friends. 
Today I greatly appreciate that many of these friends are here in Warsaw – participating in our 
special meeting – the International Conference on Stochastic Methods in Mechanics: Status and 
Challenges (Warsaw, September 28-30, 2009). 
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O MOICH PRZYGODACH Z MECHANIKĄ STOCHASTYCZNĄ 
 
 

K. Sobczyk 
Instytut Podstawowych Problemów Techniki PAN, Warszawa, Polska  

 
 
 

Kiedy człowiek przekracza 70 lat swojego życia to nawet gdyby 
nie uważał tego faktu za coś nadzwyczajnego, pewne myśli o 
charakterze retrospektywnym w sposób naturalny przychodzą mu do 
głowy. Są one stymulowane przez prostą obserwację, iż świat wokół 
nas zmienił się ogromnie w porównaniu z naszymi doświadczeniami 
pięćdziesiąt czy nawet dwadzieścia lat temu. W wymiarze 
profesjonalnym kończy się czas naszego formalnego zatrudnienia i 
musimy się przyzwyczaić do nowej roli w społeczeństwie – 
symbolizowanej przez nowy „tytuł”: emeritus. Na tym etapie życia jest 
mało prawdopodobne, że ktoś będzie zachęcał nas do podjęcia nowych 
wyzwań, gdyż młodsi – niejako z natury rzeczy – powinni mieć większe 
możliwości. Należy więc „rozglądać się” za innymi i raczej 
łatwiejszymi zajęciami. Bez żadnych wątpliwości, refleksje o 

przeszłości są łatwiejsze.  
 
W tym krótkim eseju pragnę podzielić się z Czytelnikiem o tym jak to się stało, że związałem 

moje życie ze stochastyką, a dokładniej – z mechaniką stochastyczną. Chciałbym też wspomnieć o 
pewnych „wydarzeniach” związanych z moją pracą naukową, które przyniosły mi szczególną 
satysfakcję. 

Kiedy w 1960 roku ukończyłem Wydział Matematyczno-Fizyczny na Uniwersytecie 
Warszawskim (otrzymując stopień magistra matematyki) zacząłem pracować w Instytucie 
Energetyki w Warszawie. Jednakże, już po kilku miesiącach pracy wyczuwałem, iż nie jest to 
miejsce, które może dostarczać mi wystarczającą satysfakcję. Byłem więc zainteresowany 
znalezieniem innego, właściwego miejsca dla mojego rozwoju zawodowego. I wtedy, pewnego 
dnia na wiosnę roku 1961 zadzwonił do mnie kolega ze studiów mówiąc, że Instytut Podstawowych 
Problemów Techniki Polskiej Akademii Nauk (a dokładniej: profesor S. Kaliski – pracujący wtedy 
w zakresie dynamicznej teorii sprężystości i w dziedzinach pokrewnych) jest zainteresowany 
przyjęciem „świeżych” magistrów na studia doktoranckie. Ta wiadomość bardzo mnie 
zainteresowała. Po kilku miesiącach (od 1-go lipca 1961 r.) zostałem doktorantem w tym znanym 
instytucie badawczym (z którym pozostałem związany do dnia dzisiejszego). 

W pierwszych kilku miesiącach studiów doktoranckich moje główne zadanie polegało na 
studiowaniu wybranych działów fizyki, mechaniki, a także matematyki, które miały być potrzebne 
dla przyszłej pracy badawczej. Pewnego dnia (prawdopodobnie – wiosną 1962 r.) profesor Kaliski 
w krótkiej rozmowie ze mną (był On człowiekiem zajętym i dość formalnym) powiedział mniej-
więcej tak: „przyszedł chyba właściwy czas, aby Pan zaczął pracować nad jakimś konkretnym 
problemem, co prowadziłoby do doktoratu; w tym instytucie nikt nie pracuje w zastosowaniach 
stochastycznych (tj. w modelowaniu i analizie rzeczywistych zjawisk losowych), ale jest to 
kierunek bardzo ważny i „przyszłościowy”. I dalej kontynuował: „ mam dla Pana następujący 
problem: niech sobie Pan wyobrazi, że fala sprężysta pada na powierzchnię z losowymi 
nierównościami (chropowatościami), która to powierzchnia rozdziela dwie różne półprzestrzenie 
sprężyste. Ponieważ powierzchnia jest chropowata, fala będzie ulegać rozproszeniu, ale falowe pole 
rozproszone będzie losowe (bo nierówności są rozłożone losowo). Tak więc, Pana zadanie polega 
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na rozwiązaniu problemu rozpraszania fali sprężystej na powierzchni geometrycznie losowej. 
Później powinien Pan pomyśleć o rozpraszaniu powierzchniowej fali Rayleigh’a na powierzchni 
losowej będącej granicą półprzestrzeni sprężystej”. 

 
Na tyle ile dziś mogę sobie przypomnieć, rozmowa ta była najprawdopodobniej – jedną z 

najbardziej stresujących rozmów w moim życiu i ... perspektywą ciężkiej pracy w nadchodzącym 
czasie (!). Nawet najprostsze pytania jakie stawiałem sobie po tej „rozmowie” w pierwszych 
tygodniach i miesiącach 1962 roku były straszne; na przykład: co oznacza „powierzchnia losowa”? 
jak należy rozumieć losowość rozproszonego pola falowego? Postawiony problem oznacza, iż – 
matematycznie rzecz ujmując – mam losowy/stochastyczny problem brzegowy dla równań teorii 
sprężystości; jak sformułować poprawnie taki problem? Dodatkowo, nie było wokół mnie nikogo, z 
kim mógłbym przedyskutować moje pytania, a także ... dzielić się moimi frustracjami. Tym 
niemniej, bez wątpienia problem postawiony przez profesora Kaliskiego był nie tylko dla mnie 
wyzwaniem, ale był także atrakcyjny naukowo i ważny w zastosowaniach. Był to początek mojej 
drogi do mechaniki stochastycznej! 

Czytelnik tego eseju może łatwo wyobrazić sobie, że moja praca nad problemem doktorskim 
wymagała wiele wysiłku. Był to także dla mnie czas wytrwałego studiowania różnych problemów 
dotyczących propagacji i rozpraszania fal w radiofizyce, geofizyce i akustyce. Poszukiwanie 
analogii było zawsze siłą nauki. W połowie roku 1965 moja praca doktorska była na ukończeniu, a 
jej publiczna obrona odbyła się w maju 1966 roku. Przyszedł czas przyjemnego odprężenia i 
satysfakcji; tym bardziej, że mniej więcej w tym samym czasie (sierpień 1965) spotkałem osobę, 
która rok później została moją żoną. Tak więc życie moje weszło w nowy, interesujący i szczęśliwy 
okres trwający do dnia dzisiejszego. 

Praca badawcza nad doktoratem wprowadziła mnie w szerszy krąg problemów badawczych, 
mianowicie w zagadnienia propagacji fal stochastycznych, które pozostawały głównym 
przedmiotem mojego zainteresowania do wczesnych lat osiemdziesiątych. Badania te dotyczyły 
propagacji fal w ośrodkach stochastycznych. Zjawiska falowe w takich ośrodkach są 
matematycznie opisywane przez równania różniczkowe cząstkowe z losowymi współczynnikami; 
mogą też być charakteryzowane w inny sposób, jeżeli ośrodek przenoszący ruch falowy jest 
mieszaniną/kompozycją ośrodka macierzystego i losowo rozłożonych inkluzji (te problemy były 
przedmiotem mojej habilitacji w 1974 roku; główne rezultaty zostały opublikowane w Acta 
Mechanica, 1976 r.). Ważnym „wydarzeniem” w moim życiu związanym z tym nurtem badań było 
moje stypendium badawcze w USA w roku akademickim 1970/71, a nade wszystko mój pobyt w 
Instytucie Matematycznym im. Couranta Uniwersytetu Nowojorskiego. Było czymś bardzo 
interesującym i ekscytującym mieszkać w Nowym Jorku i pracować w tym doskonałym instytucie 
matematycznym w otoczeniu wielu sławnych uczonych, takich jak m.in.: sam R. Courant, M.D. 
Donsker, K. Friedricks, P. Lax i J.B. Keller – który w latach sześćdziesiątych publikował najlepsze 
prace na temat propagacji fal w ośrodkach stochastycznych. 

Na przełomie lat siedemdziesiątych i osiemdziesiątych (XX wieku) coraz częściej 
odczuwałem, że propagacja fal stochastycznych nie jest jedynym polem moich zainteresowań 
naukowych. Myślałem też, że byłoby pożyteczne zbliżenie moich badań do głównego nurtu badań 
w Instytucie (którym była mechanika materiałów i konstrukcji). Tak się złożyło, że w jakimś 
stopniu byłem już przygotowany do takiej zmiany. Rok akademicki 1975/76 spędziłem bowiem 
jako Talbot-Crosbie Research Fellow na Wydziale Mechanicznym Uniwersytetu w Glasgow 
pracując z Prof. J.D. Robsonem i Dr. D.B. Macvean’em nad zagadnieniem drgań losowych 
pojazdów drogowych poruszających się ze zmienną prędkością. Dziedzina drgań 
losowych/stochastycznych odpowiadała dobrze moim zainteresowaniom stochastycznymi 
równaniami różniczkowymi, podczas gdy różne efekty degradacji elementów konstrukcji na skutek 
drgań, np. zniszczenie zmęczeniowe, były ważne dla różnych zastosowań. 

Z
Text Box
International Conference on Stochastic Methods in Mechanics: Status and Challenges, Warsaw, September 28-30, 2009

Z
Text Box
64



Myślę, że powinienem w tym miejscu dodać, iż jednocześnie z chęcią zmiany moich 
zainteresowań obawiałem się „utraty” mojej wiedzy i doświadczenia badawczego w zakresie 
propagacji fal. Około 1980 r. postanowiłem więc napisać książkę, która sumowałaby moje i inne 
rezultaty badawcze dotyczące fal stochastycznych. Książka taka została opublikowana w języku 
polskim w 1982 r. („Fale stochastyczne, PWN, Warszawa), zaś jej rozszerzona wersja 
anglojęzyczna „Stochastic Wave Propagation” została wydana przez Elsevier w 1985 r. Praca nad 
tą książką dostarczyła mi dużo intelektualnej satysfakcji i w jakimś stopniu, uczyniła moje 
nazwisko rozpoznawalnym. 

 
Tak więc począwszy od wczesnych lat osiemdziesiątych moje zainteresowania badawcze 

koncentrowały się niemal całkowicie na nowej dziedzinie: dynamice stochastycznej układów 
technicznych i stochastycznej analizie zniszczenia zmęczeniowego materiałów. Ta dziedzina – 
będąca nową i atrakcyjną w owym czasie pozostaje ciągle żywym i ważnym obiektem dociekań 
naukowych ze względu na jej doniosłe znaczenie aplikacyjne. Moja praca w tej problematyce w 
ostatnim długim okresie czasu przyniosła mi przyjemność i dużą satysfakcję; pozwalała mi też w 
pełni uczestniczyć w międzynarodowej współpracy badawczej. 

Nie jest moją intencją opisywanie tutaj wszystkich moich wielce ekscytujących powiązań 
naukowych z różnymi instytucjami badawczymi i z wieloma zaprzyjaźnionymi uczonymi z różnych 
krajów. Wyczuwam jednakże, że powinienem zrobić pewne wyjątki. 

Chcę wspomnieć mój 3-miesięczny pobyt w Danii w 1985 roku – w charakterze profesora 
wizytującego w Duńskim Uniwersytecie Technicznym (Lyngby k/Kopenhagi) na zaproszenie prof. 
Ove Ditlevsen’a, wybitnego specjalisty w zakresie niezawodności konstrukcji i mechaniki 
stochastycznej. Z przyjemnością wspominam wspólną pracę badawczą z Ove, wykłady na temat 
stochastycznych równań różniczkowych dla zastosowań oraz jednoczesne pisanie „skryptu” (ang. 
Lecture notes), który został szybko i pięknie wydany przez wymieniony wyżej Uniwersytet. Jego 
zmodyfikowana i rozszerzona wersja przyjęła później formę książki: Sobczyk K., „Stochastic 
Differential Equations with Applications to Physics and Engineering”, Kluwer Acad. Publishers, 
Dordrecht, 1991. 

 
Drugie ważne „wydarzenie“ w mojej współpracy międzynarodowej to moja wieloletnia i 

bardzo efektywna współpraca z Prof. Billie F. Spencer’em – Uniwersytet Notre Dame (Indiana, 
USA). Ta naukowa przygoda rozpoczęła się w 1990 roku kiedy ten Uniwersytet zaoferował mi 
specjalne stanowisko profesora wizytującego (the Endowed Melchor Visiting Professorship) na rok 
1990/91. Po kilku latach podobne stanowisko (the Endowed Massman Professor in Engineering) 
otrzymałem na rok 1987/88. W międzyczasie (1993-97) razem z Bill’em realizowaliśmy wspólne 
badania (dotyczące stochastycznej analizy zniszczenia zmęczeniowego) w ramach wspólnego (USA 
– Polska) projektu badawczego im. Marii Skłodowskiej-Curie. Ta dekada współpracy zaowocowała 
kilkoma pracami w periodykach międzynarodowych i dwiema książkami: Sobczyk K., Spencer 
B.F., „Random Fatigue: from Data to Theory”, Academic Press, Boston 1992; Sobczyk K., Kirkner 
D.B., „Stochastic Modelling of Microstructures”, Birkhauser, Boston, 2002. Współpraca ta była dla 
mnie autentycznie wielkim doświadczeniem zarówno w sferze organizacji i prowadzenia badań jak 
i w sferze szeroko rozumianej kultury i relacji międzyludzkich. I wreszcie, gdy mówię o związkach 
z nauką amerykańską, powinienem wspomnieć moje bliskie relacje z profesorem Y.K. Lin’em – 
wybitnym specjalistą w dynamice stochastycznej, prowadzącym od połowy lat osiemdziesiątych 
Centrum Badań Stochastycznych (ang. Stochastic Research Center) w Uniwersytecie o pełniej 
amerykańskiej nazwie: Florida Atlantic University (Boca Raton). Ci, którzy znają prof. Lin’a, 
wysoko cenią Jego wielką kulturę i uczciwość w pracy badawczej. Moje pobyty w Boca Raton jako 
profesor wizytujący (w 1988 r. oraz w 2004 r.) i dyskusje z prof. Lin’em wspominam dzisiaj z 
prawdziwą przyjemnością. 
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Drugim nurtem moich związków z badaniami prowadzonymi w różnych ośrodkach na 
świecie były konferencje naukowe. Wygłaszane przez mnie referaty (a często także udział w 
komitetach naukowych) dawało mi poczucie jedności nauki – niezależnie od różnic w ludzkich 
doświadczeniach. Wymienię tutaj konferencje, uczestnictwo w których miało dla mojego życia 
naukowego istotne znaczenie. Oto one: spotkanie (workshop) w Lyngby (1982) organizowane 
przez prof. Ove Ditlevsen’a, Weibull Memoriam – IUTAM Symposium w Sztokholmie (1984) 
organizowane przez profesorów: S. Eggwertz’a i N.C. Lind’a, sympozja IUTAM-owskie nt. 
Dynamiki Stochastycznej: w Igls/Insbruck (1987) organizowane przez profesorów G. Schueller’a i 
F. Ziegler’a, w Turynie (1991) organizowane przez profesorów N. Bellomo i F. Casciati’ego oraz w 
Trondheim (1995) organizowane przez profesorów A. Naess’a i S. Krenk’a; konferencje 
poświęcone „obliczeniowej” mechanice stochastycznej organizowanej w Grecji przez profesora P. 
Spanos’a (z Rice University w Teksasie) – w Atenach (1994), Santorini (1998), Corfu (2002); 
konferencje w USA: w Blackburg – Virginia (1988) organizowana przez profesorów R.A. Heller’a i 
M.P. Singh’a, w Denver – Colorado (1992) organizowane przez profesorów R.B. Corotis’a i Y.K. 
Lin’a, w Worcester – Massachusetts (1996) organizowane przez profesora M.N. Noori’ego, w 
Notre Dame – Indiana (1998) organizowane przez profesorów B.F. Spencer’a i E.A. Johnson’a i 
wreszcie – konferencja nt. Mechaniki nieliniowej i dynamiki stochastyzcnej w Waterloo – Kanada 
(1993) organizowana przez profesorów: W. Kliemann’a i S. Namachchivaya. 

Dziedzina mojej pracy badawczej – Dynamika stochastyczna układów technicznych była też 
przedmiotem, który miałem zaszczyt prezentować w moim wysoko prestiżowym referacie 
plenarnym (na zaproszenie Komitetu Organizacyjnego) na XXI-ym Światowym Kongresie IUTAM 
(Intern. Union of Theoretical and Applied Mechanics), Warszawa, 2004 (organizatorzy – 
profesorowie: W. Gutkowski I T. Kowalewski). 

Jednakże, tym co było wyjątkowo wspaniałe w tym długim czasie mojej pracy badawczej i 
międzynarodowej współpracy było moje silne odczucie, że międzynarodowa społeczność badaczy 
w mechanice stochastycznej tworzy unikatową grupę przyjaciół. Dzisiaj jest mi bardzo miło, że 
wielu z tych przyjaciół jest tutaj w Warszawie – uczestnicząc w naszej specjalnej konferencji 
międzynarodowej nt. „Stochastic Methods in Mechanics: Status and Challenges” – Warszawa, 28 – 
30 września 2009 r.  
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